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ABSTRACT
Calculi for
Functional Programming L anguages
with Assignment

Daniel Eli Rabin
1996

Pure functional programming and imperative programming appear to be contradictory approaches to the de-
signof programming languages. Purefunctional programminginsiststhat variableshave unchanging bindings
and that these bindingsmay be substituted freely for occurrences of the variables. Imperative programming,
however, reliesfor itscomputational power on theateration of variable bindingsby the action of the program.

One particular approach to merging the two design principlesinto the same programming language in-
troduces a notion of assignable variable distinct from that of functionally bound variable. In this approach,
functional programming languages are extended with new syntactic constructs denoting sequences of actions,
including assignment to and reading from assignable variables. Swarup, Reddy and Ireland have proposed a
typed lambda-calculus in this style as a foundation for programming-language design. Launchbury has pro-
posed to extend strongly-typed purely functional programmingin thisstylein such away that assignmentsare
carried out lazily.

Inthisdissertationweextend and correct thework of Odersky, Rabin, and Hudak givingan untyped |ambda-
calculus as a formalism for designing functional programming languages having assignable variables. The
extension encompasses two untyped calculi sharing a common core of syntactic constructs and rules corre-
sponding to the similaritiesin al the typed proposals, and differing in ways that isolate the semantic differ-
ences between those proposal s. We provethe consi stency and suitability for implementation of thetwo calculi.
We adapt atechnique of Launchbury and Peyton Jones to provide a safe type system for the cal culi we study,
thus providing a correct replacement for systems, now known to be flawed, originally proposed by Swarup,
Reddy, Ireland, Chen, and Odersky.
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1

I ntroduction

The design of certain functional programming languages (Haskell [Hudak et al., 1992] and Miranda[Turner,
1985] among them) is renowned for its rejection of assignment to variables as a basis for specifying com-
putations. This rejection stems both from the desire to free the programmer from low-level implementation
concernsand fromtheurgeto provideasimple, powerful theory of programtransformation. Toits proponents,
the avoidance of variable assignment earns for these languages the taxonomic designation of pure functional
programming languages.

The absence of variable assignment, however, mitigates the usefulness of pure functiona programming
languagesin at least two ways. Firgt, athough the freedom from the need to express low-level implementa-
tion concerns has great force in speeding the prototyping of programs, thisforce hasadark sidein theinability
to control these detail sfor engineering purposes. Thisconcern recapitul atesthelingering mistrust of compilers
on the part of assembly-language programmers, the difference being that functiona -programming compiler
technology has not (yet) attained the triumphal level of object-code efficiency that characterizes many of to-
day’ s conventional-language compilers.

A second factor mitigating the virtue of purity is that many programming problems are about changing
state. Therise in popularity of object-oriented programming (stemming ultimately from the design of Sim-
ula[Birtwistleet al., 1973]) attests to the usefulness of a programming paradigm in which program objects
encapsulating local states simulate the behavior of the real-world objectsthat are the subject of the computer
program. It is possible for programs written in pure functional programming languages to simulate stateful
computations by means of transition functions operating on an explicitly-represented state. However, it is
difficult for such a functiona program to represent its use of state as simply as programs in a conventional
language in which the state isimplicit and ever-present.

Inthelast few yearsthere have been several proposal sfor introducingassignment into purefunctional pro-
gramming languages without compromising their essential susceptibility to formal reasoning. Althoughthese
proposals differ in detail, an identifiable subset of them revolves around a common set of design principles:
we add to the syntax of the pure functional programming language adistinct set of termsfor representing com-
mands, the command terms are constrained to be meaningful only when chained together in alinear sequence,
and observationsof thestoreare expressed as commands, not val ues. These principles, properly implemented,
are sufficient to preserve referential transparency in the extended language.

The published proposals are variously presented as untyped or typed lambda-calculi, or informally pre-
sented as extensions to functional programming languages. In this dissertation we bring a unity of approach
to severa of these proposals. We use the techniques of untyped lambda-cal culi to develop an untyped oper-
ational semantics for pure functional programming with assignment. We give extended lambda-cal culi that
model two variants of our target class of programming-language proposal's, we prove fundamental properties
of these calculi, and we introduce a type system that excludes programs having run-time failures owing to
misuse of the store constructs.

The most immediate antecedent of the current work isthework of Swarup, Reddy, and Ireland on the Im-
perative Lambda Calculus (ILC) [Swarup et al., 1991; Swarup, 1992]. Thiswork is presented formally using
both operationa and denotational techniques, but it is essentially atyped system. In contrast, we follow our
previouswork on Aygr [Odersky et al., 1993; Odersky and Rabin, 1993] in adopting the operational -semantics
techniques of untyped |lambda-cal culus as our formal basis; thisapproach alowsusto study computationa is-
sues and type-safety issues separately. We further exercise our approach by extending it to cover the proposal
of Launchbury [Launchbury, 1993] that storetransformationsshould be executed on demand just as functional
computationsare in non-strict functional programming languages; our extension represents thefirst fully for-
mal basiswe know of for Launchbury’s proposal.

In addition to bringing contrasting techniquesto bear on these existing proposals, the present dissertation
also presents some corrections to previous work. We cite our own mistakes first: the proof of the Church-
Rosser and standardization properties in [Odersky and Rabin, 1993] contains a subtle flaw that we correct
here in an interesting way. In addition, we modify the calculi presented in our earlier work to allow a more

1



eager store lazy store
informal: informal: L 1993
formal, untyped: ORaH 1993, here formal, untyped: here
formal, typed SRel 1991, CO 1994 formal, typed here

C=K.Chen, | =E. Irdland, L = J. Launchbury, O = M. Odersky, Ra=D. Rabin, Re = U. Reddy,
S=V. Swarup. Contributionsof the present dissertation are identified by the word here. Work
corrected here is underlined.

Table 1.1: Contributionsof the present dissertation to the design of functional programming languages with
assignment.

flexible relationship between locality of names and locality of store-computations. We also have a correction
to make to previoustype systems proposed for both ILC and Ayg [Chen and Odersky, 1994]: these published
type systems are now known to violate the essentia property that reductions preserve typings. The error is
classical, having been noticed by Reynolds almost two decades ago in [Reynolds, 1978]. In thisdissertation,
we adapt atype system proposed in [Launchbury and Peyton Jones, 1994] to provide a safe type system for
both the variants of Ay treated here.

Table 1.1 summarizes the contributions of this dissertation.

We now proceed to introduce the subject of this dissertation in greater detail. We give historical back-
ground in two sections, first treating our immediate motivation in the addition of assignment to functional
programming languages, then reviewing work on the complementary approach that startswithimperative pro-
gramming and attempts to analyze programs for functionally pure substructure. We mingle the trestment of
our contributionswith thesetwo historical sections. Wethen list theimportant methodol ogieswe employ, re-
view related work not mentioned earlier, and finally give a chapter-by-chapter overview of the remainder of
the dissertation.

1.1 Theapparent incompatibility of assgnment and substitution semantics

Wewill first make a naive attempt to combine assignment and functional programming in one language. This
attempt will fail, but it will serve to define the problem solved by the class of language designs that forms
the subject of thisdissertation. Thisnaive approach adds variable assignment expressions (:=) and command
sequencing (; ) to the underlying functional language; we will show that the resulting languageis aready ref-
erentially opaque—substituting variables by their bindings does not necessarily preserve the meaning of a
program. To take a simple example, we expect the expression

letx=0inx:=x+1;X
to havethe value 1. Likewise, we expect the expression
letx=0inx:=x+1; X:=x+1; X (1.1

to have the value 2.

Now we ask the classic question: What val ue shoul d the semanti cs of such aprogramming languageassign
to the following expression, which takes advantage of the abstraction facility of the functiona component of
the language to abbreviate a repeated command?

letx=0in(leey= (x:=x+1)iny;y; X) (1.2

If we look at this expression from the imperative-programming point of view, we might reason that the up-
dating of x takes place at the point where the assignment expression is bound toy, and hence that the value of
theentireexpression is 1. On the other hand, we would like our language to bereferentially transparent—that
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is, it ought to be valid to substitutex := x+1 for y to obtain (1.1) again, which hasthe value 2. We now have
aconflict: two perfectly reasonable, but different, ways of evauating this small program yield different an-
swers. 1 If we had given the semantics of thislanguage viaaformal cal culus, we would say that the caculus
is non-confluent or lacks the Church-Rosser property. Informally, we can just state that the semantics of the
language isinconsistent with the semantics of function application defined by substitution (which iswhat we
generally mean by referential transparency).

This conflict liesat the heart of the divergent evolution of functional and imperative languages. If we ban
imperative constructs, we can have both referentia transparency and confluence (this is the Church-Rosser
theorem of classical lambda-cal culus [Barendregt, 1984]), but if we insist on retaining assignment we appear
to lose both. It isthusan important question whether this conflict can be resolved

The answer isthat it can. Just as imperative constructs supply a suitable villain for the functiona point
of view, so also the underspecified order of evaluation providesavillain for the imperative point of view. If
aformal calculus requires that evaluation of a program takes place in a certain order, consistency can be re-
established. Thisisexactly what adenotational semantics for an imperative language does. It iseven possible
to carry out thisapproach for ahigher-order language, especialy if thelanguage usesthe call-by-valueeval ua
tion order, in which argument expressions are always eval uated before the function applications of which they
are part. Scheme [Clinger and Rees, 1991] and Standard ML [Milner et al., 1990] are two examples of lan-
guages designed in thisfashion. These languages, however, are outside the scope of this dissertation because
they are not referentialy transparent, even with respect to the call-by-value -rule used in [Plotkin, 1975].

1.2 Approachesfrom functional programming

Section 1.1 depictsadichotomouschoice in programming-language design: it seems we can obtain either full
referentia transparency, or have assignment in the language, but not both. Recent research approaching the
issue from the point of view of functional programming, however, has shown this dichotomy to be only an
apparent one. We now give an overview of thisline of research, whose foundationsin the lambda-cal culus
arethe subject of thisdissertation. Wetrest the complementary approach, from the point of view of Algol-like
languages, in Section 1.3.

The point of attack for al the proposal swe survey here isagainst thetacit assumption in Section 1.1 that,
because a notion of assignabl e store requires a sequencing of commands, this order of evaluation must some-
how be derived from the evaluation order aready present in the functional language. If sequences of com-
mands affecting the store were somehow disentangled from expressions denoting values, the example (1.2)
given above would become meaningless, since that example contains assignment commands in a positionin
which a pure functional language would require a value expression.

1.2.1 State-transformer monads

One of the first proposals along these lines was Wadler’ sproposa [Wadler, 1990a; Wadler, 19924] to take in-
spiration from the theoretical work of Moggi [Moggi, 1989; Moggi, 1991] and adopt the category-theoretic
notion of monad as a program-construction framework within functional programming languages. For the
purposes of the present informal exposition, amonad on some underlying domain consists of atype construc-
tor that takes any type to a type of “generaized commands’ that yield that type. There is an operator  for
sequencing such generalized commands and an operator 1 for embedding values as trivial generalized com-
mands. These operators are required to obey algebraic laws similar (but not identica) to the unit and associa
tive laws of amonoid.

The symbolsr and 1 that we have just introduced for the monad operators are the same symbols that we
use in the body of the dissertation (starting in Section 2.3) for syntactic constructs with a monad-like inter-
pretation. We adopt these symbols here for consistency. Although we treat them informally as functionsin a

1A situation like this almost occursin the programming language Standard ML, which is defined by a precise semanticsin [Milner
etal., 1990]. That semantics specifiestheinterpretation of (1.2) yielding the answer 1 by way of specifying the order in which evaluation
takes place.
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programming language, the syntax we later give them as part of formal calculi differs in some respects.?

The monad structureismore general than we require—we are only concerned with monads of statetrans-
formers. Asgiven by Moggi and Wadler, such a monad has its operator and unit element defined (using in-
formal functional-programming notation in the style of Haskell) by

typeSTa = S— Sxa (1.3)
> : STa—(a—>STP)—STR (1.9

fog = Mslet(s,x) = fsingxs, (15)

T a—=STa (1.6)

X = As.{SX) (1.7)

where the type S represents the type of the store (which will always be invisibleto user programs), and s,
are variables having thistype.

This monad would not be interestingif only these generic operatorswere available. In order to modd the
creation, update, and reading of assignable variables, we make use of the additional operators

new : o— ST (Ref a) (1.8)
update : Refa—a— ST () (1.9
read : Refa—STa, (1.20)

where Ref a isthetype of references to values of another type a.

The operator new accepts a value of type a and returns a state-transformer that creates and returns a new
reference to that value in the store. The operator update returns a state-transformer that carries out a new
assignment to an existence reference to avalue of type a, and the operator read returns a state-transformer for
observing the valuereferred to by a given reference.

These additiona operations can be defined in terms of an implementation of the store, but we do not yet
require thislevel of detail. The main point isthat the types associated with the store operators enforces the
restrictionthat thecommandsthey denoteonly havetheirimperativemeaning when placed inalinear sequence
usinge. It istheimposition of thislinear sequence on the accesses to the storethat insulatesthe order of access
to the store from the eval uation order of expressionsin the language.

In thisdissertation we always notate the operator > as including the bound variabl e of thefunction defining
itssecond argument. Weal so maker right-associative; M>x-(N >y -P) and M>x:N >y -P mean thesamething.
On the other hand, (M x-N) >y P isasyntacticaly distinct expression which is related to the others by the
analogue of the associative law for command sequences.

The approach via monads deals with the example (1.2) by distinguishing between commands as state-
transformers and their effects. Thus the meaning of (1.2), as re-expressed in terms of state-transformers, is
unambiguoudly 2: the variabley is bound to the state-transformer itself, and the process of carrying out this
binding merely constructs the state-transformer without carrying out its effect. The state-transformation is
then carried out twice owing to the occurrences of y in a command-sequence context.

Figure 1.1 gives an example of a program in a pure functional programming language extended with an
assignment monad. The example function makeCounter accepts an initial value (an integer) and initidizesa
counter variable, returning an object (implemented as afunction) that produces a store-transformer for incre-
menting the count.

Hudak’ s proposal for mutable abstract data types [Hudak, 1992] is similar to the use of state-transformer
monads but |ess general inintent and somewhat simpler algebraically. Hudak focuses on the rel ationship be-
tween direct-styleand continuation-stylefunctional expressions of the mutation of data structures, and on the
algebraic construction of accessors and constructorsin the two stylesfor given datatypes.

2The untyped natureof the calculi introduced in this dissertation requires usto incorporatethe functional nature of the second operand
of > into the syntax of the operator itself by means of abinding occurrenceof avariable. The operator thus always appearsin the form
Mwx:N in theformal chaptersof this dissertation.



mkCounter = Ainit.new init>count -1 (Aincr.read countrold -update count (old +incr) -ignore-1 old)

Figure 1.1: The counter-object in monadic style

1.2.2 ThelmperativeLambda Calculus

Just now, we shied away from presenting the meaning of the monadic operatorsnew, update, and read interms
of a proposed implementation. Our reluctance derives from the following observation, which motivates the
field of forma programming-language semantics. If we define the meaning of a programming construct in
terms of a particular implementation, we usua ly have in mind that many other implementations might also be
in accord with our intended semantics. How, then, do we define this accord? Forma semantics answers the
guestion by using precise mathematical abstractionsin language definitions, and by judging implementations
by whether they fulfill the abstraction.

Whereas the state-transformer monad was introduced informally by Wadler, the Imperative Lambda Cal-
culus (ILC) presented in [Swarup et al., 1991; Swarup, 1992] gives just such aforma semantics for a pro-
gramming language having both call-by-name abstractions and assignable variables. ILC isa simply-typed
lambda-cal culus extended with assignment-rel ated constructs. 1LC' stypesystem enforcesthelinear sequenc-
ing of store operations in much the same way as the monadic system surveyed in Section 1.2.1 above, but
somewhat simpler.

Aside from the move to aformal calculus, ILC makes two notable contributions. The first of these isthe
adoption of an a phabet of store-variablesentirely distinct from the alphabet of lambda-bound variables. This
new kind of name (informally speaking) denotesalocationin thestoreinall contexts. Inthejargon associated
with the informal semantics of conventiona programming languages, ILC store-variable names have no r-
values. Thisfact isthe key to the referential transparency of ILC.

The second important contribution of ILC to thethread of research under discussion istheintroduction of
asemanticsfor purification (a so called effect masking in theliterature[Lucassen and Gifford, 1988; Jouvelot
and Gifford, 1989]). The semantics of ILC alows the context of an imperative computation to use that com-
putation’sresult as a functiona value. This capability requires that the calculus be able to ensure that the
store-using computation neither depends upon nor influences the functional computatation in which the result
isto beused. ILC relies upon itstype system to guarantee this safety condition.

Unfortunately, the technique used to make thisguarantee in [Swarup et al ., 1991; Swarup, 1992] has been
observed to have a technica flaw (asis pointed out in [Huang and Reddy, 1995]): ILC permits purification
under theconditionthat free variablesof theterm to be purified are demonstrably safe, but setsof freevariables
are subject to change under substitution and so the conditionis not an invariant of the operational semantics.®
Nonetheless, this difficulty (whichwe remedy in this dissertation) should not obscure the important advance
into formal reasoning for functional programming with assignent represented by ILC.

1.2.3 ThecalculusAvar

ILC relieson itstype systemin an essential way, but the untyped lambda-cal cul us provides areasonable com-
putational formalism for functional programming without any recourse to type structure. It thus makes sense
to ask whether the untyped |ambda-cal cul us can be extended with assignment constructsto yield aviablefor-
malism for designing afunctiona programming language with assignments. The calculus Ay introduced in
[Odersky et al., 1993; Odersky and Rabin, 1993] answers thisquestion in the affirmative. Rather thanusing a
type system to exclude programs that attempt to purify results containing residua references to a store com-
putation, the untyped calculus Ao forces such programsto yield aruntime error (modeled in the calculus by
reductionsthat get stuck without yielding one of the set of sanctioned answer terms).

With anotion of runtime error in the calculus it becomes possible to study the issue of type systems for
guaranteeing safe purifiability as separate entities from the underlying computationa formaism. Chen and
Odersky [Chen and Odersky, 1994] give atype system for Ayar based on the genera techniques of ILC, but

3We give amore detailed exposition of this problem in Chapter 6.
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thistype system suffers from the same subtleflaw as ILC; the type system we present in Chapter 6 remedies
thisflaw.

Theresultsof our previouswork on Ay areincorporated into thisdissertation, but thecalculusitself isre-
named A[38! eag] in theuniform nomenclatureintroduced here. We al so take the opportunity to correct severa
flawsin the application of proof techniques of the purelambda-cal culusto proving the fundamenta properties
of A\var ; the details are treated in Chapter 3. We aso extend the formalism of Ayg to account for the variant
language discussed in the next subsection.

124 Lazy storetransformers

All thework on lazy functional programming with assignment that we have cited so far makes atacit assump-
tion that the command sublanguage behaves like commands in a conventional imperative language: com-
mands are executed in order as soon as they are encountered. Launchbury, however, observes in [Launch-
bury, 1993] that this semantics for command sequences is not the only one possible. The eval uation sequence
of afunctional language can be lazy or eager (yiel ding semantically distinct languages); command sequences
are subject to a similar choice. Pure lazy functiona programs can be understood as carrying out computa-
tionto produce avaue only in response to a demand for that value; likewise, Launchbury proposes command
sequences that are only executed as far as necessary to produce the results that are demanded. Launchbury
claimsthat the resulting style of imperative programming meshes more easily with an ambient lazy functional
programming language, and he gives examples to support thisclaim.

In order to see the distinctionintroduced by Launchbury, we consider a very short program written in the
notation of the calculi we introduce in the formal chapters of this dissertation. In this notation, the construct
pure marks off a command sequence whose fina result isto be returned as a value to the surrounding func-
tional program; theresult termitself ismarked by the operator 1 applied to thefina expressioninthecommand
sequence. Our example programis

pure(loop; 13) (1.12)

where loop is some command whose execution never ends (wewill seelater that such termsexist). Inamore
conventional functiona programming language, this example might be notated

newstore ( loop;
return3).

Theresult returned by the imperative computationin (1.11) in fact does not depend on that computation. Nev-
ertheless, in ILC and Ayar the execution of the program would result in the non-terminating execution of 1oop.
In Launchbury’s proposal, however, the program yields the value 3, since no demand is ever made for any
component of theintroduced store. This extralaziness enters quite naturally if one approaches the design of
imperative-functional programming languages directly at the level of extending an existing lazy functional
language (as is done for example in [Peyton Jones and Wadler, 1993]). In such an approach, it actually takes
some extrawork to specify that the state-transformers ought to be strict.

Theinformality of the original presentation of thelazy store-transformer proposal leadsustoinguirewhether
the\yar formalism can be adapted to adifferent order of command execution. Wehave carried out thisadapta-
tion, and the resulting changein formalismis so minor that thetwo resulting calculi (A[Bd!eag] and A[Bd!laz])
can be presented in parallel throughout the dissertationwith only occasional remarkswhere the differences are
treated. The most significant departure from this paralel structureis reported in Section 5.2.6: a proof tech-
nique based on continuati on-passing-styletranslationsis not easily transferred from A[Bo! eag] to A[Bo!laz].

1.25 Common features
We have seen in this section that a whole family of related proposals for pure functional programming with
assignment has arisen. The common features of these proposals are;

¢ Substitutable(lambda-bound) variables and store-variabl esare distinct syntacticentities. Store-variables
may beadistinct kind of value called areference.
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o Commands form a distinct subcategory of expressions. Commands can only be composed in alinear
sequence

o Access to the current value of a store-variable or reference is accomplished by a specia command, not
by the use of an expression having avalue.

In addition to these features that are common to all of the proposals presented so far, usefulness for pro-
gramming requires that there be away of coercing a command into an expression that denotes avaue. This
coercion must fail if there are dangling references to the command’ sstore or if the command makes reference
to another store. ILC and A5 devote explicit, forma attentionto thisissue; theinformal language-based pro-
posals generally concentrate the concern on an opaque primitivefunction called newstore or run that carries
out the coercion.

In Chapter 2 we will represent these common features in the design of the two lambda-cal culi A[38!eag]
and A[Bo!laz]. These two calculi reflect these common features in the bulk of their specifications and differ
only in their trestment of execution order within command sequences.

1.3 TheAlgol 60 heritage

The preceding discussion in Section 1.2 recounts the immediate motivation of the present work in the search
for aharmoniousintroduction of assignment constructsinto referentialy-transparent functional programming
languages. This combination of paradigms, however, may also be approached from the imperative-program-
ming point of view, and indeed it has been, dating from the days of the great progenitor, Algol 60 [Naur
et al., 1960; Naur et al., 1963]. It isa peculiarity of Algol 60, little imitated in its successors, that its de-
fault parameter-passing mechanism is call-by-name: procedure invocation isdefined by the copy rule stating
that the procedure invocation has exactly the same meaning as the defining text of the procedure, but with
all occurrences of the formal parameter being replaced by the actual parameter supplied to the procedure (as
an expression of the language). Of course, the definition requires the renaming of bound variables to avoid
clashes, but this requirement easily becomes second nature—the real semanticsis in the idea of textual re-
placement. The copy rule, which is exactly the 3-rule of the lambda calculus [Church, 1951] may reasonably
be claimed to capturethenotion of referential transparency which will be characteristic of thelanguage-design
proposalswe consider in this dissertation.

Algol 60 with call-by-name parameter passing is, in fact, referentialy transparent. The semantic ambigu-
ity demonstrated in (1.2) above cannot occur because commands themsel ves cannot be bound to variablesin
Algol 60—they can only be abstracted viathe procedure-definition mechanism. Itispossibleto defineaproce-
durewhose body is the command whose duplication woul d cause problems, but the definition itself cannot be
mistaken for acontext inwhich theincrementing of x shouldtake place. Only in the context of acommand se-
guenceisacommand defined. This property of Algol 60isthe germ of the common feature of the approaches
surveyed in Section 1.2 that separates commands and expressions syntactically, and gives commands their
meaning only in the right context. This orthogonality of functional and imperative features of Algol 60 has
been refined into a more modern language design by Reynoldsin his design of Forsythe [Reynolds, 1988],
and it has been studied formally in [Weeks and Felleisen, 1992; Weeks and Felleisen, 1993].

The importancefor us of considering the Algol 60 traditionisthat it has given riseto asignificant aterna
tive approach to the melding of functional and assignment-based programming. Reynolds [Reynolds, 1978]
proposed away of controlling the interference of assignment-based subcomputations within Algol-like pro-
grams by means of a syntactic analysis. This concern is anaogous to our concern with purification in our
functional languages with assignment. Reynolds's proposal, however, has a more symmetrical structurethan
our language: whereas we distinguish between the inside and outside of a scope of store usage, Reynolds
addresses the possibility of mutua interference between (possibly) parallel subexpressions of a program.

The paper [Reynolds, 1978] is aso interesting to us because it contains an early exposition of the prob-
lem that spoilsthe type systems given in [Swarup et al., 1991] and [Chen and Odersky, 1994]. The problem
was later rectified in the context of Algol-like languages by Reynolds himself by use of intersection types
[Reynolds, 1989] and more recently by O’ Hearn, Power, Takeyama, and Tennent [0’ Hearn et al., 1995] with
atypesystem (SCIR) loosely based on linear logic[Girard, 1987]. Thislatter type system has been adapted to
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arevised language based on I LC by Huang and Reddy [Huang and Reddy, 1995]. The type system we present
in Chapter 6 is an dternative that more closely followsthe origina outlinesof ILC, although the SCIR-based
approach may prove to be more generally applicable.

1.4 Methodology

We have claimed the formalization of severa language proposals as a key contribution of this dissertation.
We use two main formalisms. First, and most pervasively, we follow [Plotkin, 1975] and model the basic
(untyped) computationa meaning of programsin each language in terms of an extended |ambda-cal culus en-
dowed with areduction rel ation that model s computation. We also usethe apparatus of typetheory, especially
of polymorphic type systems [Girard, 1990; Reynolds, 1974; Milner, 1978], in proving the desirabl e proper-
ties of the proposed type systems with respect to their underlying untyped calculi.

The lambda-cal culus serves both as the operational semantics of computation in our programming lan-
guages and a so asthe basis for formal reasoning about these programs. In order to form the basis for afunc-
tional language with assignment, a calculus must have several key properties:

e Church-Rosser property. The result of acomputation must be independent of the order in which reduc-
tionsare carried out. This property guarantees that terms have a single meaning: the reduction system
provides a semantics for the language.

e Standardreduction order. There isadeterministic reduction order that always reduces aterm to an an-
swer if theterm can be reduced to such anormal form. This property makes plausiblethe claim that the
calculus serves asthe basisfor designing aprogramming language: itispossibletowriteadeterministic
program to carry out the evaluation. Aside from itsimplications for automation, standardization sim-
plifies some proofs (such as that of Lemma 5.1.6 in the present dissertation, for example) by allowing
the consideration of only a single reduction sequence.

o Smulationby store-based machine. Thereisafaithful simulation of evaluationin the calculusby acal-
culus that manipul ates an explicit store in a single-threaded fashion. This property vaidatesthe claim
that the imperative features of a calculus can actualy be simulated by the imperative features of ama
chine.

Thelambda-cal culus methodol ogy requires some change in the usual vocabulary of discussion concerning
purification. It iscommon, in discussing the problem of masking effects in afunctional/imperative language,
to phrase the central problem in terms of implementation: will the language prevent access to a store location
after its thread dies? Can different evaluation orders give different results? In terms of a lambda-calculus,
these questions resolve to one question: isthe calculus Church-Rosser? If it is, then certainly evaluation or-
der can make no difference in outcome. Furthermore, if we understand a dangling-location reference as a
stuck evaluation in the calculus, we see that the Church-Rosser property guarantees that the problemisin the
program, not in the choice of evauation strategy.

The presentation in Chapter 6 uses the standard apparatus of typetheory: type systems are given as infer-
ence systems, with type derivations as proof trees in the inference system so defined.

1.5 Other related work

We have already surveyed the most closely related literature in the preceding sections. We now survey work
that stands outside of our narrowly-defined topic but isrelated either by attacking similar problemsor by use
of similar methodol ogy.

The oldest approach to introducing imperative constructs into functional languages isto express the state
as an explicit object that is passed around by the program. This is the approach taken by most denotational
semantics for imperative languages (see, for example, [Stoy, 1977] or [Schmidt, 1986]). When applied to
functional programming, this approach relies on an analysis carried out by the language processor to achieve
efficient execution: it must be determined that the use of the state object is actually single-threaded and thus
that it is safe to implement state mutations via in-place update of data structures. Schmidt [ Schmidt, 1985]
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and Fradet [Fradet, 1991] give syntactic criteriafor proving single-threadedness;, Guzman [Guzmén and Hu-
dak, 1990; Guzman, 1993] gives a type system in which well-typed programs possessing certain designated
types are thereby proved to be single-threaded; another approach based on abstract interpretationis presented
in [Odersky, 1991]. Wadler has investigated the use of type systems based on linear logic for this purpose
[Wadler, 1990b; Wadler, 1991]; several other researchers have aso investigated the use of linear logic as a
design principal in functional programming languages [Lafont, 1988; Wakeling and Runciman, 1991; Reddy,
1991; Reddy, 1993].

Riecke, dong with Viswanathan, [Riecke, 1993; Riecke and Viswanathan, 1995] has approached the con-
struction of a safe type system for roughly the class of languagesinhabited by our calculi, but their methodol -
ogy makes essential use of properties of denotational models and isinherently based on types. Furthermore,
thelanguagetreated is call-by-val ue (whereas our calculi are call-by-name). These contraststo our work place
Riecke and Viswanathan’ sapproach in a distinct thread of research.

Not all related research deals directly with the issue of state in pure functional programming: thereis a
substantia body of work influenced by the designsof Lisp and Scheme. Thework of Felleisen, Friedman, and
colleagues into the foundations of Scheme-like languages [Felleisen, 1987; Felleisen and Friedman, 19873;
Felleisen and Friedman, 1987b; Felleisen and Hieb, 1992] uses extended lambda-cal culi to provide semantics
for such languages. Despite the fact that this work deals exclusively with call-by-value languages and does
not insist on preserving the reasoning properties of the pure fragment (such asthevalidity of the call-by-name
[-rule), we have adopted much of its methodol ogy in the present work. In asimilar vein, Mason and Tal cott
have investigated the formal semantics of much the same class of programming languages in works such as
[Mason, 1986; Mason and Tal cott, 1991; Mason and Tal cott, 1992a; Mason and Tal cott, 1992b].

A recent paper by Sato [Sato, 1994], which is very much in the vein of the work by Mason and Tal cott,
presents a Scheme-like calculusin which syntactic criteriafor the placment of update commands provideref-
erentia transparency. Sato’s division of reductions into sequentia and paralld reductionsis reminiscent of
the present work’s segregation of expressions and commands, but it is not clear whether there is any formal
correspondence.

Graham and Kock [Graham and Kock, 1991] present adesign for afunctional language with assignment.
Their design rests on static syntactic detection of opportunitiesfor violation of referentia transparency, and
they report aformal proof of the desired properties. The language, however, appears not to have higher-order
functions, and their syntactic restrictions appear less natural than those for our typed languages; furthermore,
the correctness of purificationisonly proved for asubset of the language.

Further removed from our work on assignment, but still related, is a stream of research on devising con-
structs for input/output in pure functional programming languages. Input/output shares with assignment the
need to institute a sequencing structure for commands. devices used include continuationsand streams [Hu-
dak and Sundaresh, 1988] and monads [Wadler, 1992b; Peyton Jones and Wadler, 1993]. Gordon’sthesison
the subject [Gordon, 1994] contains a detailed survey of thisresearch. |nput/output differs from assignment,
however, initsneed to represent an activity that isexternal to the program and not necessarily under itscontrol.
Issues of reactivity and synchronization thus arise that have no counterpart in the study of assignment.

1.6 Overview of the dissertation

The contents of this dissertation are organized as follows.

Chapter 2 definesthecalculi A[3o! eag] and A[3d!laz] that are studied in rest of the dissertation. The calculi
are introduced festure-by-feature both informally in terms of the intended meaning and as formal systems.

The next three chapters, which devel op the theory of the untyped calculi in detail, form the core of thethe-
sis. Chapter 3 givesthe proofs of the Church-Rosser and standardization theorems for both calculi. Chapter 4
explores the operationa -equiva ence theory (the intended principles of program equivalence) of the calculi.
In Chapter 5 we look at the relationship of A[3d!eag] and A[Bd!laz] to other calculi. In thefirst part of Chap-
ter 5, we introduce the calculi A[Bdoeag] and A[Bdolaz] which have explicit stores in the language syntax.
The equivalencein operational semantics between these calculi and their forbears substantiatesthe claim that
the latter really axiomatize the use of astore. In the second part of Chapter 5, we prove the important fact
that A[Bo!eag] forms a conservative extension of a calculus representing a purely functional programming
language; we conjecture that the result a so holds for A[38!laz].
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Chapter 6 complements the completely untyped treatment of the preceding chapters with a presentation of
asafe type system for the calculi A[3d!eag] and A[Bo!laz]. Thistype system is an adaptation of atype system
proposed by Launchbury and Peyton Jones [Launchbury and Peyton Jones, 1994]; we prove its safety and
remark on the prospect for use of the unadapted type system.

Chapter 7 summarizes the dissertation and suggests further work in the area.
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L ambda-calculi with assignment

Inthischapter weintroducethe extended lambda-cal culi that form the subject matter of thisdissertation. After
abrief section that providesfor later reference some of the basic mathematical toolswe employ in describing
thecalculi, we build up adescription of our calculi with assignment starting from the pure lambda-cal culusand
adding features incrementally. We concentrate here on motivating and describing the design of these calculi;
we leave the mathematical treatment of their properties for the following chapters.

The two calculi weintroduce, which correspond to the columnsin Table 1.1 on page 2, have amost iden-
tical structures: they differ only in onerule. Wewill thus be able to describe thetwo calculi in paralld for the
greater part of this dissertation, and will treat their differences as the exception rather than therule.

Our starting point will be the pure lambda-cal culus (Section 2.1), which is a pure calculus of functions.
Finding this setting too austere to model even the common practice of modern purely functiona program-
ming languages, we add primitive functions and data constructors to form the calculus A[3d] (Section 2.2).
With A[Bd] asapoint of departurewefirst add constructsto model sequences of commands. After introducing
those command constructs that make sense irrespective of the domain of commands envisioned (Section 2.3),
we specialize our attention to stores and assignments by introducing (and axiomatizing) some primitive com-
mands in Section 2.4.

At this point the heart of the matter may seem to be addressed, but there are two important further re-
finements to be dealt with. First, we address the axiomatization of locally-defined store-variables in Sec-
tion 2.5, and second we introduce locally-defined stores in Section 2.6.1. In respect of our approach to our
subject matter from the functional-programming side, we use the term purification to denote the introduc-
tion of boundaries beyond which alocal store is both ineffective and unobservable. It is only in the rules
we devise for the treatment of locally-defined stores that the difference between the notion of eager and lazy
store-transformations emerges into the design of these calculi.

2.1 Mathematical preliminaries

Our presentation of our lambda-cal culi with assignment restson alarge body of well-devel oped mathematical
formalisms. We make particular use of proof techniques from the pure lambda-cal culus, for which our main
reference is [Barendregt, 1984]. We engage, however, in significant extensions to the pure lambda-calculus;
we collect some of the mathematical terms we use for these extensionsin the present section.

L anguages of terms and reductions

A formal calculus consists of a set of terms, called alanguage, and rules for manipul ating the terms. We use
the terminology of lambda-calculusin calling these reduction rules and the relation between terms that they
define reduction. Wecall asubterm that matches theleft-hand side of arule aredex and theresult of rewriting
it areduct. When aterm is rewritten according to areduction rule, any portion of a designated subterm that
survivesinto the rewritten termis called aresidual of that subterm.

Languages are defined inductively by rules giving basic terms and productions for forming terms from
simpler terms. We often have occasion to define a language based on the inductive description of another
language. For example, we describetheincremental additionof featuresto thecal culi presented in thischapter
by incorporating all the productionsof a previously-described language. A further example of thistechnique
is the formation from a language of alanguage of contexts by adjoining a specid term [] (the “hol€”) to the
language as a production for the top-level syntactic category of terms; we usually intend to admit only those
terms so formed that have exactly one occurrence of the hole.

Thelanguage of lambda-calculus

Thelanguage of the pure lambda-cal culusitself is defined by the productionsin Figure2.1. The purelambda
calculus contains only variables, abstractions of terms, and applications of one term to another. Although

11
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X,y € Variables
M,N € Terms

X variables
AX.M  abstractions
MeN applications

M =
|
|

Figure 2.1: Syntax of the pure untyped lambda-calculus A[39].

the standard notation for application is simple juxtaposition, we deviate from this standard throughout this
dissertation because we will have occasion to annotate the application operator, and it is difficult to annotate
ablank. Weretain the usua lambda-cal culus convention that application (e) associates the | eft.

The solereduction rule of the purelambda-cal culus, 3, makes use of the notion of substitutionandisgiven
inFigure2.3.

Bound variables

The abstraction construct Ax.M issaid to bind the variablex, that is, occurrences of x within M but not within
any distinct occurrence of Ax. are considered to have a uniqueidentity separate from all other variables. This
meaning is underscored by considering terms of thelambda-cal culusto be distinct only up to the equiva ence
of a-renaming, which permits the renaming the bound variable of an abstraction aslong as al the bound oc-
currences are renamed accordingly. The a-renaming equival ence alowsthe very convenient a-renaming con-
vention, which isthat we aways pick an exemplar of an equivalence class of terms under a-renaming such
that all bound and free variables have distinct names. This convention saves us considerable effort inwriting
explicit renamings of bound variables whenever we discuss reductions that move terms into the scope of a
bound name.

An occurrence of avariable that is not bound is called free; we denote the set of free variables of aterm
M by fvM. A term M iscaled closed if fv M isthe empty set.

Inthe course of thisdissertation, wewill have occasionto introducenew variable-binding constructs. Such
constructs will be subject to the same conventions whether the issue is mentioned or not.

Extended lambda-cal culi

We can extend the pure lambda-cal culus by introducing term-constructors and reduction rules. Although we
seldom use the following terminology, it is convenient for the current discussion to call attentionto three pos-
sible kinds of syntactic extension:

o Names. An extension may introduce new syntactic categories of names, distinct from the variables of
pure lambda-cal cul us.

e Binding constructs. As discussed in Section 2.1, constructs may be introduced to delimit scopes for
particular names. Each such construct comes with a notion of a-equivalence.

o Free constructors. These are term-constructorsthat are neither names nor binders of names.

The purelambda-cal culusitsalf has oneterm-constructor of each type, application (e) being the sole free con-
structor.
An extended cal culus may introduce new binding constructsfor an existing syntactic category of names.

Substitution

A fundamental operationontermsissubstitutionof aterm for all occurrences of afreevariablein another term.
Substitution forms the foundation of the operational semantics of the lambda-calculus, but it can actualy be
defined wherever names are used. The notion of substitutionis defined a ong with the notion of free variable,
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which in turn embodies the basic notion of a name-binding construct: the bound name is distinct from any
name present in an outer scope.

Definition 2.1.1 (Substitution) For termsM, N, and variable x in some extended lambda-cal culus, the sub-
stitution of M for xin N, denoted [M/x] N, is a term defined inductively by the rules

M/Xx = M
M/Xy =y xX#Y)
M/X](AY.N) = MN.[M/XN
M/ (NLeN) = ([M/XINy) e (M/XNp)
M/X] T(Ng,...,Nn) = T(M/XIN,...,[M/X]Ny)

where T denotes any free syntactic constructor of the extended language, and n denotesits arity.

Definition 2.1.1 makes essential use of the a-renaming convention in the rule for substituting into an ab-
straction: the convention permits usto avoid mention of a case in which the variable bound by the abstraction
has the same name as the variable for which we are substituting. We merely assume that o-renaming has
solved the problem for us before the definition of substitutionisinvoked.

Animportant elementary property of sequenced substitutionsisthe followinglemma oninterchangingthe
order of two subgtitutions. Thislemma finds use in establishing the confluence of lambda-cal culi.

Lemma2.1.2 (Substitution) For termsMj, M, N and variables x,y such that x # y and x ¢ fv M, we have

M2y M1/XIN - = [[M2/y] M1/x] [M2 /Y] N.
Proof: By induction on the structure of N.
Base cases:
e N=xX

M2 /y] M1/X] x = [M2/y] My; likewise, [M2/y] M1/X] [M2/y] X= [[M2/y] M1/X] X = [M2 /y] M1.
e N=V.

M2 /y] M1/X]y = [M2/y]y = My; likewise, [M2/y] M1/X] M2/y] y = [M2/y] M1/X] M2 = M2, sincex ¢
fvM,.

Induction steps:

e N=Az.N'.
Inthiscase, M2 /y] M1/X] Az.N') = [M2/y] Az.[M1/X]N') = Az.[M2/y] M1/X] N'. By theinduction
hypothesis, thislast expression is equivalent to Az.[[M2 /y] M1/X] [M2 /y] N'. Applying the definition of
substitutionin reverse establishes the statement of the lemmain this case.
¢ The statement of the lemma followsfor all other constructed terms by essentially the same argument.
This concludes the proof of Lemma 2.1.2.

Normal form

A term in alambda-cal culus to which no reduction rule appliesis said to be in normal form.
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X,y € Variables
M,N € Terms
c" € Constructorsof arityn
f € Primitivefunctions
A € Answers
M = X variables
| " constructors
| f primitives
| MM abstractions
| MeN applications
A = f
| c"eAje---eA, k<n
leex=MinN = (Ax.N)eM convenient abbreviation

Figure 2.2: Syntax of the basic untyped lambda-calculus A[3d].

(AX.M)eN — [N/X]M B)
feM — &f,M) )
o(f,(AX-M)) = N e(Ax.M)
Xf,f1) = Negeofy
§f,c"eMie---eMp) = NicneMje---eMy

Figure 2.3: Reduction rules for the basic untyped lambda-cal culus A[3d].

2.2 Thebasc applied lambda-calculus

Since we are using lambda-cal culi to modd the extension of pure functional programming, we first give the
calculus with which we model pure functional programming itself. Although it is possible to use the pure
lambda-cal culus for this purpose, we find it more plausible to acknowledge the existence of primitive values
and operationsin all existing functional languages. Furthermore, the constructions given in Chapter 5 make
essential use of thisfeature. This consideration leads usto extend the pure lambda-cal culus with constructors
and primitivefunction symbols(Figure 2.2). Constantsare represented in thiscal culus as constructorsof arity
zero. Since we will need to distinguish among the severa calculi to be discussed in this dissertation, we in-
troduce a systematic naming convention for calculi: the character A isfollowed by abracketed list identifying
the features of the calculus. The basic cal culus presented in this section is denoted A[39)].

The reduction rules that enable A[3d] to model the computations of functional programming are givenin
Figure 2.3. The rule 3 is exactly as in the pure lambda-calculus: it models parameter passing by term sub-
gtitution. Rule  gives the computational model for primitive functions. The apparent complexity of therule
stemsfrom theneed to limit the power of such terms, sinceitiswell known (see[Barendregt, 1984]) that in the
presence of arbitrary &-rules a calculus might fail to be confluent (a property defined in Section 3.2 below).
The actual rule given is weak enough to avoid this pitfal. Essentidly, it says that a primitive f is defined
by lambda-terms giving its meaning when applied to a A-abstraction and when applied to constructed values.
Such definitions cannot examine the deeper structure of theargument to f. Wewill seein Chapter 3 that this
restriction permits A[9] to be confluent.

As an example of how primitive functions are represented in A[Bd], consider the operator + on integers.
Theintegersthemselves are represented by nullary constructors, one for each integer. The operation + isthen
described by a countable (and obviously recursive) collection of rulessuch as + e 1 — +1, where +; isitself
aprimitivefunction with defining rulessuchas +;, ¢0— 1and +1 ¢5 — 6.
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ThetermsNy, Ny 1, , and Nt o that appear in the definition of theauxiliary function (—,—) inFigure2.3
arethedegrees of freedom we havein our restricted &-rules. For each primitivefunction f defined in aparticu-
lar instance of A[Bd] wemay defineN;, specifyingthebehavior of f onargumentsthat arelambda-abstractions,
oneterm N¢ 1, specifying how f acts on each primitivefunction f;, and oneterm Ny o for each constructor c"
specifying how f acts on values constructed by c". Weneed not giveall theseterms: it ispermitted for aprim-
itive function to be partial. For example, the addition function would not be defined on any constructors that
are not numerals. Thiscareful structuring of &rule definitionsrestrictsthe power of such rulesto detection of
one layer of syntactic structure of value-terms, branching to one of several lambda-definable computations.
Aswe mentioned above, thisrestrictionis sufficient to ensure that our calculi can be confluent in the presence
of &rules.

We curry our definition of primitivesfor two main reasons. First (and lessimportant), we obtain the usual
notational advantage of currying, inthat wedo not need tointroduceany special notationfor multiple-argument
primitives. Moreimportantly, we will be proving theorems about the existence of deterministic standard or-
dersof evaluation for all our calculi of concern. For such atheorem to be true, a calculus must commit to the
evaluation order for argumentsto a primitivefunction in order to break the symmetry of syntax that an uncur-
ried representation offers. The curried formulation is a convenient way of alowing the standard evaluation
order to arise naturaly.*

We can also define booleans by designating particular nullary constructors true and false; we can thus
defineif by N true = AX.Ay.X and Nt rase = AX.Ay.y. However, in the case of if it isjust as easy to use the
Church-encoded truth values Ax.Ay.x and Ax.Ay.y directly.?

The rule & only applies when the argument expression is a constructed value, a primitive function, or an
abstraction: thisrestriction is built into the definition of the auxiliary function 8 —,—). We can exploit this
fact to simulatethe behavior of call-by-valuelanguages by defining a primitivefunction force, setting Negree =
Ax.x. Wecan also defineafunctionstrict asAf .Ax. f e (force e x). These definitionswork becausethey require
the argument to force to be avalue before the application expression is reduced.

The usual technique used to simulate call-by-value parameter passing isto modify therule 3. This mod-
ification (introduced in [Plotkin, 1975]) involves a division of expressionsinto applicationsand al other ex-
pressions, which are now termed values. The modified rule By has the same rewriting effect as the original
rule 3, but only applies when the argument expression isavaue. Thisrestriction reflects the notion that only
an evaluated expression is substituted into the body of the function in a call-by-valuelanguage.

We mention the contrast between call-by-name and call-by-value cal culi at thispoint because wewill have
occasion later inthischapter tointroduceasimilar contrast between lazy and eager store-computations. Just as
therules3 and By differ only inthesyntacticform of theargument terms, so also the rulesdefining purifications
of lazy and eager store-computations will differ only in the syntactic form of the contexts from which the
purification rule extracts a pure result.

The operational semantics we use throughout our treatment distinguishes a certain subset of terms as an-
swers A, the observabl eresults of terminating computations. There may be normal formsthat are not answers:
such terms are regarded as indicating a run-time error. For a basic example of such aterm, consider the term

+etruee 1,

where + is a primitive implementing addition on integers (themsel ves represented as nullary constructors).
The definition of the primitive + contains no defining case for the constructor true, so this term cannot be
reduced. However, itisnot an answer because + isaprimitive, not aconstructor of arity 2 or higher asrequired
by the definition when applied to two terms as isthe case here. This particular example of a“stuck” term (an
adjective we will continueto use) has an obvious correspondence to atype error in a programming language.

1The operator == for store-variableidentity introduced in Section 2.5 is subject to the same issues as primitive-function definitions.

2Church encoding [Church, 1951] representsvarious mathematical constructs aslambda-terms by giving those constructsinterpreta-
tionsas higher-order functions. Each natural number, for example, isidentified with aterm that iterates an unknown function that number
of times on an unknown argument. The encoding at hand, that for truth values, is based on the idea of conditionals picking one of two
arguments. The encoding for true picksthe first; that for false picksthe second.
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C € Commands
M = ... (Figure2.2)--- previously defined constructs
| C commands
C = GCyim primitive commands
| tM trivial command
|  Mie>x-My sequenced commands
Mi; My = MipX-Ms (x ¢ fvMy) convenient abbreviation

Figure 2.4: Syntax of generic command constructs.

MexN)>y-P — Mex(Npy-P) (assoc)
tMexN — [M/XN (unit)

Figure 2.5: Generic command reductions.

2.3 Axiomatizing commands and assgnment

We now start the process of describing the extensionsthat axiomatize the various styles of assignment infunc-
tiona programming which form our present subject. In constructing a formal treastment of imperative pro-
gramming we are concerned with the notion of a sequence of commands. The basic concept of a sequence
can be specified agebraicaly in terms of three components: the designation of an empty sequence, a set of
primitive elements, and the concatenation of two sequences to form alonger sequence. For axioms, asimple
description of sequences states that the operation of concatenation is associative and that the empty sequence
isatwo-sided identity for this operation—in other words, asequenceisamonoid.® A sequence of commands,
however, ought to have more structure reflecting the consequences of the execution of the commands affect-
ing the meaning of subsequent commands. Algebraicaly, this extrastructure can be captured very generaly
by the axioms for a monad (already introduced in Section 1.2.1). Figure 2.4 shows how we add a syntactic
representation of a monad to the basic lambda-calculus. In this monad-based view, a command has both an
effect and aresult. The effect is detected by the interaction between commands in a sequence, but the result
isavaue passed from one command to the next through the variable bound in the construct M x-N.

Thisincremental additionto the calculusis parametrized by a collection of primitivecommands Cpyim: by
varying the selection of primitive commands we vary the particulars of the monad under consideration. In
our calculi for assignment, the primitive commands will be constructs for assigning and reading the val ues of
locationsin the store.

Aside from the primitive commands yet to be defined, there are two ways of constructing commands in
this extension to A[3d]. The first, notated 1M, creates from any term M the command that passes M to the
rest of the command sequence; such commands have no other effect. The second, M1 >x-M», represents a
sequencing of two commands, with the result of M1 being bound to the variable x within M.

The reductions given in Figure 2.5 express two of the three monad laws.*

Rule assoc expresses the associ ativity of substructurewithin acommand sequence. Thisrule often comes
into play when part of acommand sequence has been abstracted as avariable: when acommand is substituted
for the variablethere may be aneed for some rewriting according to assoc before reduction rules axiomatizing
the effect of the command become applicable. The orientation of rule assoc gives a preference to command
sequences written associated to the right. In the development of the mathematical propertiesof our calculi in
Chapter 3 rule assoc will have a specid role.

SWe are glossing over alot of universal algebrabasics here. Actually it is the notion of afree monoid that correspondsto an algebra
of sequences.

4The right-unit law is omitted from this axiomatization; however, it is possible to prove this law as an operational equivalence (see
Proposition 4.2.1, part 6).
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VW € Sorevariables

Corim = M:=N soreNatM
| M7 fetch fromM

Figure 2.6: Syntax of basic assignment primitive commands.

v:i=M;v?>xP — v:i=M; [M/XP (fuse)
vi=N; w?ex-P — w?exv:i=N;P (vZw) (bubble-assign)
Vi=MexP — vi=M;[()/XP (xefvP) (assign-result)

Figure 2.7: Reduction rulesfor basic primitive store commands.

Rule unit expresses the meaning of the construct 1M given informally just above; itsright-hand side dis-
plays how theresult M is substituted for every occurrence of xin M.

24 Axiomsfor assgnment

In Section 2.3 the definition of the procedural cal culus was parametrized by a set of primitive procedures. We
indulgedin thisbit of over-abstractionin order to isolate the constructs that are reusable for any monad from
the constructs that axiomatize assignment to locationsin a store—thelatter being the actua subject matter of
thisdissertation. Figure 2.6 extendsthe syntax from Figure 2.4 further to supply specific primitive commands
for assigning and retrieving valuesin a store.

The most basic new construct in Figure 2.6 is the store-variable. Store-variables correspond to the usual
notion of variablesin imperative programming languages, but we give them a distinct name because the un-
derlying lambda-cal culus already has constructscalled variables. Store-variablesare chosen from acountable
alphabet of symbolsdistinct from the symbolsused for lambda-bound variables. Figure 2.6 a so givesthe def-
inition of the assignment command, which models the setting of a store-variable, and of the read command,
which models the retrieving of the value associated with a store-variable. The syntax of both commands per-
mits a complex expression to be given where the store-variable should appear; this expression must reduce
to an actual store-location before the command inwhich it appears can have an effect. Thisfeature allowsus
to model pointer variables, anonymous objects, and other features of modern imperative programming lan-
guages.

Figure 2.7 givesthe rules by which these constructs axiomatize a store. The basic notion underlying these
rulesis that the history of assignment commands, represented within the command sequence, is a sufficient
representation of a store—thereis no explicit syntactic construct for modeling a store. Instead, the reduction
rules axiomatizetheinteracti on between assignments and subsequent readsthat isat the heart of the semantics
of a store. Rule fuse embodies the requirement that reading a store-variable that has just been assigned the
value M, with thevalueread to bereceived by the remainder of the compuation viathe variable x, corresponds
to replacing each bound occurrence of x by M. The name of the rule derives from the two occurrences of the
same store-variable ‘fusing’ to produce the transmission of the vaue read. Rule fuse leaves the assignment
command in place, since an assignment remains in effect after itsvalueisread. Rule bubble-assign takes care
of the case in which the store-location read is different from the one just assigned: the relevant assignment
must occur further to the left or not at all. Consequently, rule bubble-assign rewrites the command segquence
to move theread to the left past an assignment to which it isindifferent. The name of the rule bubble-assign
comes fromvisualizing theread-expressions as‘ bubbling’ to theleft until they meet an assignment to the same
store-variable that is being read.

The rules fuse and bubble-assign actually do satisfy our intution about assignments. If more than one as-
signment to the same store-variableis present in the sequence of commands, the most recent from the point of
view of aread-expressionisthe onewhich suppliestheval ueactually observed. Thisplacement of assignment-
and read-expressions into a common sequence that is independent of the mechanism used to model function-
application enables our calculi to be referentially transparent.
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VW € store-variable

Corim = ---(Figure2.6)--- previously-defined commands
| wM introduce new store-variable
| v=w test store-variableidentity

Figure 2.8: Syntax for allocatable store-variables.

The precision required of aformal system demands that we provide the additional rule assign-result to
cover the case in which the remainder of a command sequence observes not just the effect of an assignment
command, but aso its functional result. To see why thisis necessary, note that the left-hand side of the rule
fuseisgiveninterms of the syntactic abbreviation*;’ defined in Figure 2.4. Expanding the abbreviation gives
the new left-hand sidev:=M >z v?>X-P, where zis a variable that does not occur freein v?i-x-P (whichis
to say that it does not occur free in P). Thus fuse does not apply in the case in which z does occur freein P,
and hence we must supply aruleto cover thiscase if wewant the cal culusto reflect the intended semantics for
assignment. Ruleassign-result does thisjob by supplying aneutral value asthefunctional value of theassign-
ment command wherever thisval ue happensto be observed inthe sequel. Inthe remainder of thisdissertation
we denote this neutral value, which is an instance of anullary constructor c® (constant) by ().

The definition of assign-result is somewhat arbitrary, in that the rule is specified to apply only when the
store-variable v has become known. It is certainly possible to consider avariant rule

N:=Mpx-P—=>N:=M; [()/X]P, (xefvP)

which does not force the computation of the store-variable. Itiseasier, however, to define eval uation contexts
(Chapter 3) uniformly if we require computation to seek an actual store-variable as target of an assignment
command regardless of the context in which the assignment command appears.

There are some notabl e differences between the notion of assignable store introduced here and the con-
structsavailablein most popul ar imperative programminglanguages. First, thereisno restriction onthevalues
that may be assigned to astore-variable: any expression inthelanguageiseligible, even other store-variables.
Second, the name of a store-variable v does not denoteits ' current value' —thereis no such concept. Instead,
thenamev merely denotesitself, and thereis an associated command v? for finding the most-recently-assigned
valuefor v and transmitting it to subsequent commands viaterm-substitution. Lastly, thereis no analoguein
our calculi tothedistinction between variables and pointers present in several popular conventional languages.
In conventional languages both avariableitself and apointer to the variable denote the variabl € sstorage, but
in different ways according to context. As|-values, both avariable and its pointer denote the location, but as
r-vaues, the variable denotes the contents whereas the pointer denotes the location. As just mentioned, the
r-valueinterpretationis absent in our calculi.®

25 Locally defined store-variables

So far, our formalism has nothing to say about where store-variables come from—we are given all the store-
variablesthat will ever exist at the outset. In programming terms, they are all global variables. This simplifi-
cation resultsfrom a deliberate decision to present the basic formalism for assignment in as much isolation as
possible. However, no reasonabl e account of imperative programming can neglect the notion of store-variable
scope, by which the programmer may introduce a store-variable that is known (within the scope of its decla
ration) to be distinct from all other store-variablesin the program. We now rectify this omission.

We do so by augmenting the basic store formalism given in Section 2.4 with constructs that allow the
allocation of new variablesin the store. Figure 2.8 introduces two new syntactic constructs. The expression

5By ‘neutrality’ we mean herethat () is distinct from any other constant having an intended meaning, such as constants representing
numbers.

6The class of “conventional languages’ hereincludes Algol 60, C, Pascal and Scheme but excludesAlgol 68, Forsythe, and Standard
ML.
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WM)exP — w.(M>XxP) (extend)
ww?e>xP — w?sxvww.P  (vZw) (bubble-new)
V==V — AX.Ay.X (identical)
V==W — AXAY.Y (vZWw) (not identical)

Figure 2.9: Reduction rulesfor allocatable store-variables.

Ww.M defines the store-variable v over the scope M.” Like lambda-variables, store-variables so declared may
be a-renamed; we make them subject to the Barendregt bound-variable convention as well 2 The second new
congtruct is atest for identity of store-variables. Many agorithms that employ pointers reguire the ability to
detect equality of pointers. In our calculi pointer equality can be represented by name equality: two location
names areequal if and only if they are alocated by the same occurrence of v. In order to make thisdefinition of
equality interna to thecalculus, weintroducethe operator ==. Our construct v correspondsto thev construct
in Odersky’scalculuswithlocal names[Odersky, 1993b; Odersky, 1994]; itisvery useful in abstracting away
from technicalitiesrequired by approaches that model scopes as an explicit collection of valid names at each
point. The v construct can be thought of as axiomatizing a particular, but widely useful, monad.
The rulesthat axiomatize the behavior of the new constructsare given in Figure 2.9.

The rule extend specifies theinteraction of the scope of a store-variablewith the monadi ¢ sequencing con-
struct . Informally, therule states that the all ocation of anew store-variable, likeany other effect onthestore,
remainsin effect fromthe point inthe command sequence at which it occursto any subsequent point. Theform
in which it is stated, however, relies crucially on the Barendregt a-renaming convention. The expression P,
which is moved from outside the scope of the new store-variable to within it is by this convention assumed
to have no free ocurrences of the store-variablein question. This can aways be achieved by an (implicit) a-
renaming of v over M before carrying out the rewriting. Like the rule assoc, the rule extend plays a specia
rolein the proofsin Chapter 3.

Since the connection between assignment and reading is carried out by ‘ bubbling’ the read to the left, we
must specify that reading from a store-variable is indifferent to declarations of other store-variables. Rule
bubble-new formalizes this requirement.

The remaining two rules identical and not identical formalize the notion of store-variable identity. The
two different lambda-expressionsinto which an identity test is rewritten correspond to the Church encodings
of truth and falsehood mentioned above; we could instead have chosen distinct constantsto play thisrole. In
all respects other than the meta-level condition by which it is defined, the construct == behaves like a two-
argument primitive function.

The relation axiomatized by == isinformally equivalent to pointer equality in conventional languages,
even though it is stated in terms of store-variable names. The calculi we are defining are thus susceptible to
the same problems of pointer aliasing as conventional languages.

2.6 Purification: extractingtheresult of a storecomputation

So far in this chapter, we have described the construction of what amounts to a generaized imperative pro-
gramming language with an embedded |ambda-cal culusfor providing procedural abstraction and computation
on purevalues. The store-modelling reductionsgivenin Figures2.5, 2.7, and 2.9 rewrite command-seguences
to new command-sequences. As a simple example, consider the command-sequence

wyv.=1; V2o XT X

"The author has found it difficult to remedy the typographic similarity of the symbol v (the Greek letter nu) with the letter v without
incurring some other notational disadvantage. Thereader may wish to note that the former symbol is upright, whereasthelatter is slanted.
8See page 12.
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It should be obviousthat thislittle program returnsthe result 1; indeed we have the sequence of reductions

wvi=1v2extx — wwvi=1[1/X (1) (by fuse)
= wv=111L

Thisisanorma form; no further reductions are possible. However, thisterm is not the same as the answer-
term 1, no matter how obviousit may be that thisisits meaning. We have no rulesfor extracting the answer
1 from the residue of the store-computation.

It might be tempting to supply a rule that strips away the context w.v:= 1; []; however, there is danger
here. Suppose that we had started with the only-dightly-different initial term

W .VV.V.= W, V2 X T X
yielding the only-dlightly-different sequence of reductions

VWVVVI=W, V2eXT X —  wwwwvi=w, W/X (T x) (by fuse)
= WWYV.=Ww;, Tw.

What happensif wejust strip away the command-sequence context in the same way as before? Unfortunately,
we would obtain the free store-variable w, which was bound before. Ininformal implementational terms, this
would correspond to all owingthe store-variablew to outliveitsscope and become adangling pointer; informal
terms we cannot hope to have a consistent calculus if bound names can escape their bonds.

We refer to the problem raised by these examples as the need for a purification construct in designs for
functional languages with assignment. The escape of bound store-variables must clearly be prohibited by any
reasonabl e proposal for a purification construct, but name-escape is not the only issue involved: we will also
haveto consider theeffect of purification constructson theinformal interpretation of store-variables as storage
locations. Aswill further emerge, purification constructs are the place where we distinguish between eager
and lazy uses of stores.

26.1 Thegeneral structureof purification rules
The problem of purification dividesinto two independent questions.

¢ When in a store-computation do result values become available, and
o What result values are lega ?

These two questions are reflected in the general structure of purification rules that we present in this sub-
section. Purification rules divide the store-computation to be purified into a store context and aresult expres-
sion. The question of when results become available arises because the result of a store-computation may not
depend on the entire computation. For example, suppose we are given theinitial term

wyv.=1; v?e-X-1 2.

Theresult 2 does not depend on the assignment v:= 1. Itisthusreasonabletotry to writepurificationrulesthat
allow thisresult to be extracted from the store-computation context even though that context contains a latent
assignment and a dependent read. The issue becomes more dramatic if we replace the innocuous assignment
v:=1with someterm Q having no normal form to give the fragment

W.Q; V?eX1 2.

An eager-storecal cul uswith assignment will computeforever tryingto find what command i spresent, whereas
alazy-store cal culus with assignment can return 2 immediately.

The question of what terms are considered legal to purify is considerably more complicated, and admits
a spectrum of answers. We have aready seen two extreme points on this spectrum: alocally-allocated store-
variable should never be extracted from its surrounding store-computation, whereas it is always safe to do
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so with a constant (nullary constructor). With more complex result expressions, which may mix constants
with unevaluated expressions, the question of purification must be deferred until it is possible to see which
of the simple cases applies. The process of purification must therefore consider the following cases for result
expressions:

1. Some subexpressions (such as store-variables) can be recognized to spoil purity merely by their syntac-
ticform;

2. some (such as constants) can be recognized to be purifiable merely by their syntactic form;

3. some (such as variables or applications) must have any judgment as to their purifiability deferred until
further computation has taken place; and finally,

4. the purity of constructed expressions depends on the purity of their subexpressions.

In terms of our informal understanding of the problem this can only be correct if the result expression
M is free of any remaining reference to the state represented by the store context §], since such areference
will be nonsensical once the representation of that state is erased from the program. Furthermore, it must
be impossible for an expression delimited by pure to affect any store-based computation elsewhere in the
program, for then the absence of the newly-erased expressions could be detected by their failure to have the
expected effect.

The application of thisinsight resultsin asort of reasoning process that isinterspersed with computation:
itispossiblethat an impure subterm may be discovered only after considerable computation. In Chapter 6 we
investigate the use of atype system to carry out thisreasoning in a stage that entirely precedes reduction.

Up to this point, we have been discussing the requirements for purification rules in terms of an informal
programmer’ sunderstanding of their role. In terms of aformal reduction system, however, the actual valida
tion of aset of purification rulesisthat the calculus using it must be Church-Rosser. We can connect the two
levels of understanding by observing that the Church-Rosser property embodies the notion that the seman-
tics given by convertibility yields a consistent semantics: interconvertible terms having normal forms have
the same normal form. Our concern about exposing a store-variable outside its native command sequence is
essentially aconcern about the possibility of giving several different interpretationsto the same expression.

2.6.2 Eager versuslazy store-computations

We now introducethe two calculi that will form the subject of the rest of the dissertation; these calculi corre-
spond to the two possible answers for when a store-computation result becomes available. The first calculus,
A[Bdleag], isadight modification of the calculusoriginally introduced in [Odersky et al., 1993; Odersky and
Rabin, 1993] (whereitis called Avar). In thiscalculus, use of the store aways proceeds as far as possible
before purification. The second calculus, A[3d!laz], takes into account Launchbury’s proposal [Launchbury,
1993] for alazy use of the store: sequences of store actions only proceed as far as necessary to produce results
that are actually demanded. We present the two calculi in parallel throughout the rest of this dissertation in
order to make their similarities and differences more apparent—the similarities, however, predominate.

There are actually two notions of computation present in these calculi: thefamiliar evaluation of lambda
expressions, and the execution of commands on the store. Each of these can independently be by-name or
by-value. We restrict our attention in this dissertation to calculi with call-by-name semantics for applicative
computations because, but we expect the treatment of call-by-value languages to be entirely ana ogous.

Boththesecal culi are based onthegeneral command cal culusof Section 2.3 withthebasic storecommands
of Figure 2.6 as primitive commands. The two calculi differ only in their purification rules; these rules, fur-
thermore, differ only in the syntactic form of the command prefixes they manipulate. The situation resembles
the distinction between the B-rules for Plotkin’s call-by-name and call-by-vaue cdculi [Plotkin, 1975]: the
difference isin the side condition, not in the action of therule.

In the calculus A[Bd!eag], no value can be purified until the state computation finishes. This condition
is enforced by the form of the prefixes S*9[] defined in Figure 2.12. The notable features of this definition
are; (1) al assignments are to known (fully computed) store-variables, and (2) there are no pending reads
whatsoever.
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M = ... (Figure28)...
| pureM

Figure 2.10: Syntax of purification construct

sl n= ]

| w.SH[]

| vi=M; S¥[]
S#] = ]

| w.s¥]]

| Mox-S¥[]

Figure2.11: Syntax of purification contexts

pureS9[t c"eMie--- oM — e (pureSY[t M) e--- o (pureSIt My]) (k< n) (purec")
pureS9[t f] — f (pure-f)
pureSt Ax.M] —  AX.pureS?9[t M] (pure-A)

Figure 2.12: Purification rulesfor A[Bo! eag].

pureS¥fc"eMie--- e M] —
pureS¥t f] —
pureS¥[ A&x.M] —

C"e (pureS#[t My]) o - o (pureS¥t MyJ) (k<n) (pure-c'-lazy)
f (pure-f-lazy)
M.pureS¥[t M] (pure-A-lazy)

Figure 2.13: Purification rulesfor A[Bo!laz].

The calculus A[B8!1az] is more lenient about such matters. The contexts S#[] defined in Figure 2.11 are
only required to be well-formed sequences of store operations.
Asan example of how the difference between thetwo cal culi isinherent in the specification of purification
contexts, we reintroduce the example
pure(loop; 1 3) (2.1

that we used to introduce the subject in Section 1.2.4. We use notation |oop to stand for some non-terminating
expression such as the well-known example Q = (AX.xe X) @ (AX.X ¢ X).

In (2.1) the context loop; [] surrounding the result expression 3 matches the definition of S¥[] in Fig-
ure 2.11 but not that of S*9[]. If weregard (2.1) as belonging to A[Bo!laz], therefore, we can reduce the ex-
pression immediately to the answer 3 by rule pure-c™-lazy. In A[3d!eag], however, the pure-reduction is not
available, and we are doomed to carry out the (non-terminating) reduction within loop forever. These out-
comes are semantically distinct.

2.6.3 Locally defined stores

We have aready discussed (in Section 2.5) how the v construct gives us locally defined store-variables. In
this section we treat the pur e construct as adefiner of local stores, and we exploretheinteraction between the
two store-related notions of locality.

Let usreturnfor themoment to theworld of Section 2.4 beforeweintroduced |ocally defined store-variabl es.
Inthisuniversethere was aset of global store-variablesthat referred to the same location everywhere withina
program. Now introducepur eintothisuniversewithout going throughtheintermediate stage of introducingv.
The effect obtainedisthat each pur e scope defines an entirely new set of bindingsfor all the globally-defined
names, since we do not allow assignment constructsto interact across pur e boundaries. The interpretation of
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store-variables as locationsin some storeis violated: a store-variable potentially denotes many bindings, one
for each pure-scope in which it is used.
As an example of this situation, consider the term

purew:=1; (purew:=2; 1+()); W?>x-1X.

Even though the assignment tow withintheinner pur e isan assignment to the exact same store-variableasthe
assignment to w in the outer pur e-countour, the result of the whole expression is 1, not 2. Commands within
theinner pure affect adistinct store.

Thisissueis entirely separate from the local scoping of store-variable names usually associated with the
term block structure in the programming-languages literature. In this customary understanding, alocal name
shadows a declaration in an outer scope because it isreally anew name. The awkwardness with global store-
variables, on the other hand, occurs even though the store-variablereally isthe same name everywhere—it is
the pur e boundary that forces the change in interpretation on us.

In fact, the situation is not remedied by the introduction of v: we are compelled to accept that store-
variablescannot beinterpreted as | ocationsif we wish to have aworkable set of pure-rules. The calculus Az,
which was the predecessor of A[3d!eag], had arestriction on the form of the contexts S9[] that attempted to
enforce the intuitive notion that al store-variables used locally to the store introduced by a pure-expression
were also declared locally to that pure. In defining the rules for the lazy-store calculus, it proved impossible
to retain this condition: thereis no way to even see what names are introduced in alazy-store context without
forcing computationsthat should not beforced. Wethus dropped the attempt to force A|Bd!1az] into thismold,
and dropped it as well for A[Bo!eag] in order to emphasize the symmetry between the calculi.

Allisnot lost, however. First of al, wetakethe major arbiter of whether a cal culus embodiesareasonable
notion of computation to be whether it has the Church-Rosser property allowing termsto be given consistent
interpretations. It turns out that both A[Bd!eag] and A[Bd!laz] have this property even without trying to force
storesto use only local names (aswewill provein Chapter 3). Second, relaxing the constraint between locality
of names and locality of stores turns out to make the encodings of A[3d!leag] and A[36!laz] into more basic
lambda-cal culi more attractive (Chapter 5). Finally, arelatively simple type system can enforce the restriction
we desire, as we show in Chapter 6. With all these considerationsin mind, we choose to view thisdifficulty
with enforcing the locdity of store-variables as a pleasant revelation of the independence of two concepts
previoudly thought to be inextricable. Thisis agood outcome for research.

2.7 Chapter summary

We have now introduced the entire syntax and reduction rules of the cal culi with assignment that form thesub-
ject of study intheremainder of thisdissertation. Theformal structureof these calculi ismotivated reasonably
directly by the structure of the programming constructs we wish to model: stores and commands. The intro-
duction of the pure construct serves to delimit the use of aloca store from a store-less ambient functional
computation, to delimit the use of alocal store from a surrounding store-based computation, and to define
whether use of the results of a store-based computation is driven by demand for the result or by the execution
of the constituent commands.

We summarize the syntax and semantics of A[36!eag] and A[3d!laz] in Figures 2.14, 2.15, 2.17, and 2.18.



24

M = X variables
| ¢ constructors
| f primitives
| MM abstractions
| MeN applications
| C commands
| pureM purified command

C = GCyim primitive commands
| 1t™ trivial command
| MoexM sequenced commands

Mi; My = Miex-Msy (x ¢ fvP) convenient abbreviation

Corim = M:=N storeN at M

| M? fetch from M

| wM introduce new store-variable

| v==w test store-variableidentity

leex=MinN = (A.N)eM convenient abbreviation

A = f
| CceAje---eA, k<n
Figure 2.14: Syntax of A[Bd!eag] and A[3d!laz]

(M.M)eN — [N/XM B)
feM — §(f,M) (®)

MexN)pyP — Mex(Ney-P) (assoc)
tMex:N — [M/XN (unit)
Vi=M; v?>xP  — v:i=M; [M/XP (fuse)
Vi=N; Ww?>xP — w?xv:=N;P (v#w)  (bubble-assign)
vi=MsxP — vi=M;[()/XP (xefvP)  (assign-result)

WwM)exP — w.(M>xP) (extend)

WW?eXP  — w?e>xwP (VZW) (bubble-new)

V==V — AX.AY.X (identical)
V==W — AXAY.Y (V£ W) (not identical)
o(f,(AX.-M)) = N; e (Ax.M)
6(f,f1) == Nf7f10f1
O(f,cC"eMje---eM;) = NicneMje---eM,

Figure 2.15: Reduction rules common to both A[Bd!eag] and A[3d!laz]

sl == 1

| w.SH[]

| vi=M; S¥[]
s¥] == 1]

| w.S¥[]

| Mox-S¥[]

Figure 2.16: Syntax of purification contexts
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pureSft c"eMie--- oM — "o (pureS[F M) e--- o (pureSYt My]) (k<n) (purec")
pureS® f] — f (pure-f)
pureS9[F Ax.M] —  M.pureS9[t M] (pure-A)
Figure2.17: Additional reduction rulesfor A[3d!eag]
pureS#t c'eMye---eM] — c"e(pureS¥[Mi]) e o (pureS¥[t M) (k<n) (purec-lazy)
pureS¥t f] — f (pure-f-lazy)
pureS¥HAx.M] — Ax.pureS¥[ M] (pure-A-lazy)

Figure 2.18: Additional reduction rulesfor A[Bd!laz]
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Proofsof the fundamental properties

The Church-Rosser and standardization propertiesare the minimum necessary to establish acalculusasarea
sonable basisfor computation. Inthischapter we provethese fundamenta propertiesfor thecalculi presented
in Chapter 2. Infact, we prove these propertiesfor calculi with amodified reduction relation that capturesthe
computational intent of the calculi while being more amenable to the desired proof techniques. We then de-
rivethe desired propertiesof the original reduction relation from those of the modified reduction. Section 3.1
outlines the proofsto be undertaken in this chapter; Section 3.2 sets forth some of mathematical framework
for the proofs, and Section 3.3 explains and justifies the modified reduction relations for which the main the-
oremswill be established. Section 3.4 introduces marked reduction (our main proof technique), and Sections
3.5, 3.6, and 3.7 carry out the proofs themselves. Section 3.8 deduces the Church-Rosser and standardization
properties of the original reduction relation from the results for the modified reduction.

3.1 A roadmap totheproofsin thischapter

The two properties we set out to prove in this chapter both have to do with the possible forms reductions can
take. The first, the Church-Rosser property, states that different reductions from the same starting term can
always bereconciled by finding acommon reduct; the second, the standardizationtheorem, statesthat asimple
rule for choosing the next redex to reduce suffices to find any possible reduct of aterm—it is not necessary
to consider every possible reduction sequence in order to characterize the computationa behavior of terms.
The proofs of these properties require bookkeeping to keep track of redexes (see Section 3.4), and much of
the detailed work presented in this chapter has to do with this bookkeeping.

The proof techniquesgivenin[Barendregt, 1984], Chapter 11, allow usto base proofs of both the Church-
Rosser property and the standardization property for each calculus on a property called finiteness of devel op-
ments (FD). This property actsas a‘loca’ version of strong normalization (a property which does not itself
hold for the calculi with assignment): if we mark a collection of redexes in aterm, and then carry out a se-
quence of reductionsinvolvingonly marked redexes and their descendants, then that reduction sequence must
terminate. The strong version of this property (FD!) states that all such reduction sequences starting with the
same marked term must end in the same term—a sort of Church-Rosser property for marked reductions. Fur-
thermore, FD! can be proved by establishing both the wesk Church-Rosser property and strong normalization
for thisreduction relation. The property FD! in turn can be used to prove the Church-Rosser and standardiza-
tion properties.

The only problem with thisline of attack isthat FD! is not actualy true for the cal culi with assignment:
the interactions of the reduction rules assoc and extend among themselves and with other rules fail to obey
the necessary restrictions. We have found it possible, however, to endow these calculi with a modified set
of reduction rules in such away that FD! isrestored. Aside from being a way out of atechnical difficulty,
this modification clarifies the structure of the proposed calculi by separating reduction rules that axiomatize
store-computation from those that merely axiomatize the sequential structure of commands. This factoring
of the rule-set defining the reductions for A[36!eag] and A[Bd!laz] has some independent intellectual interest.
With the modified notion of reduction in place, aproof of FD! aong thelines outlined above is the subject of
Section 3.5. The modified reduction formsthe basisfor the proofs givenin the next few sections, but later (in
Section 3.8) we recover the Church-Rosser and standardization properties for the original reduction relation,
which isused as the basis for proofsin the remainder of the dissertation.

Oncewe havetheproperty FD! inhand for themodified reduction, we prove the Church-Rosser property in
Section 3.6 by atechnique (due to Tait and Martin-Lof) given in [Barendregt, 1984] in which the originally-
defined reduction of the calculus and the reduction defined by complete development from a term have the
same transitive closure. The proof of the standard orders of evaluation based on FD! (Section 3.7) requires
the definition of notionsof head and interna redex for each calculuswetreat. Therole played by the property
FD! hereistojustify interchanging the order of head and internal reductionsto give astandard-order reduction
having the same result as an arbitrary prescribed reduction.
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This chapter makes arather complex use of some very standard and simpl e proof techniques from the pure
lambda-calculus. The complexity derives largely from the much greater number and diverse character of the
reduction rules in our calculi A[3d!eag] and A[3d!laz]. We pause before tackling this complexity to review
some of the more basi ¢ techniques used.

3.2 Basic conceptsand techniquesof reduction semantics

The proofsin thischapter make use of anumber of basic concepts and techni ques used in reduction semantics.
We collect these basic notionsin this section both for future reference and to give ataste of some of the proof
techniques to be employed in the remainder of this chapter.

First, we note that reduction relations can be regarded more generally in the setting of set-theoretic rela
tions (setsof ordered pairs); hence, it makes sensetotalk of thereflexive, symmetric, and transitive closures of
reduction relations. Wewill dso talk freely of one relation being a (proper) subset of another, or of the union
of two relations. We denote the reflexive-transitive closure of arelation R by the Kleene star R*. Especidly
in diagrams we a so denote the reflexive-transitive closure of areduction relation by a double-headed arrow.

Next, we introduce some definitionsthat are more typical of reduction relations.

Definition 3.2.1 (Diamond property) A relation — is said to have the diamond property if M — Mz and
M — M, impliesthat there exists M’ such that M; — M’ and My — M'.

The diamond property getsits name from its usua diagrammatic representation:

M

7N

My M,
.* ,.
MI

Definition 3.2.2 (Church-Rosser property) Arelation — issaid to have the Church-Rosser property if its
reflexive-transitive closure —* has the diamond property.

The Church-Rosser property isalso called confluence.

Definition 3.2.3 (Strong normalization) A reductionrelation— isstrongly normalizingif for every termM,
all reduction sequences starting at M consist of a finite number of steps.

Definition 3.2.4 (Weak Church-Rosser property) Areductionrelation— hastheweak Church-Rosser prop-
ertyif for anytermM, if M — M and M — M, thenthereexistsatermM’ such that M; —* M’ and M, —* M'.

The “weakness’ with respect to the full Church-Rosser property arises from the use of only single reduc-

tion stepsin the top legs of the diagram
M
My M2
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The weak Church-Rosser property is a convenient stepping-stoneto proving the full Church-Rosser property
for some calculi because of the following standard result:

Proposition 3.2.5 (Newman) If a reduction relation — is both weakly Church-Rosser and strongly normal-
izing, then it is Church-Rosser.

Proof: Standard: see [Barendregt, 1984], Proposition 3.1.25.

The proof of theweak Church-Rosser property for a cal culus can usualy be structured as two nested case
analyses. First and outermost, we classify cases by the relative position of the two redexes—whether A; and
A, areidentical, digoint, or one isa subterm of the other. Second, we form a case for each pair of reduction
rules by which A; and A, are redexes.

The standard argument for the outer case analysisis as follows:

Case (1) A; and A, are digjoint. In this case, each redex istrivialy preserved when the other is reduced; re-
ducing the preserved redex completes the diamond diagram.

Case (2) A; and A, areidentical. In this case the diamond property can be satisfied by carrying out no reduc-
tionson the lower legs of the diamond diagram.

Case (3) A; containsA, asaproper subterm. Thiscase requires consideration of every pair of reductionrules,
potentialy yielding a number of subcases that isthe square of the number of reduction rules. How-
ever, we can usualy avoid considering this many cases by using the notion of critical overlap or
critical pair from term-rewriting theory (see, for instance, [Klop, 1992]; the crucia lemmaisfrom
[Knuth and Bendix, 1970; Huet, 1980]). The necessary observation isthat aredex contained inside
ameta-variable of areduction rulewill just be carried along intact when rewriting according to the
rule. Theintact redex isthen still availableforimmediate reduction, so it istrivial to satisfy thedia
mond diagram. Only if the contained redex overlaps with the containing redex in a non-trivial way
(by sharing some term-constructors) do we need to create a special case to establish that the reduc-
tions by the redexes A; and A, can be reconciled. It should be noted both that a rule may have a
critical overlap with itself and that two rules may have a critical overlap in more than one distinct
way. One conseguence of the definition of critical overlapisthat ruleswhich act on redexes defined
in terms of digoint sets of term-constructors cannot form critical pairs.

Some caution is required when applying critical-pair reasoning in the context of lambda-caculi. In
lambda-calculi, unlike in elementary term-rewriting systems, substitutable variables are part of the
actual syntax of terms, not just meta-expressions for talking about terms. This means in particular
that it is no longer necessarily true that the term denoted by a meta-variable is carried along intact,
because one or more of itsfree variables may be substituted viaa -reduction or similar rule. Itis
often necessary to establish that rel ationsare substitutivein order to use critical-pair reasoning when
this occurs.

Case (4) A, contains A, as aproper subterm. This case can be argued by symmetry with Case 3 and so does
not require separate consideration.

We closethis section of basi ¢ techniqueswith abasic method for proving that astepwise transformation of
terms must terminate in a finite number of steps. The techniqueissimply to define afunction that maps terms
to nonnegative integersin such away that the allowed transformations always strictly decrease the value of
the function. Such a process must bump into zero after a finite number of iterations.

3.3 Factoring the notion of reduction

Among the reduction rules defining the reduction relation — for A[38!eag] and A[Bd!laz], the rules assoc and
extend are unusual inthat they do not directly contributeto the semantic substanceof thecalculi. Therulesf,
fuse, and assign-result directly model theintended notionsof computati on—substitution, primitiveoperations,
and observation of assigned values, respectively. The rules bubble-assign and bubble-new assist the modeling
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of assignment by the rule fuse. The rules assoc and extend, however, only rearrange the syntax of command-
terms so that the other rules may apply. In fact, the way in which these rearrangements interact with each
other and with the other rules disrupts the effectiveness of the proof techniques to be used in Sections 3.4
and 3.5; we will explain the problem when we come to introduce those techniques. Section 3.3.1 considers
the factoring-out of these rules as the basis for an equivalence relation on A[3d!eag]- and A[3é!laz]-terms; we
then turn our attention in Section 3.3.2 from the reduction relations formed by all the rules of the calculi to
amodified relation that operates on the equival ence classes induced by assoc and extend. It should be noted
that thisfactoring of the notion of reduction islocal to the present chapter, for we show in Section 3.8 that we
can recover the Church-Rosser and standardization properties for the original reduction relation from those
for the factored notion.

3.3.1 Thereduction relation —.

Certain crucia technical propertiesof the calculi introduced in Chapter 2 are more easily proved if we some-
how take account of thefact that the rulesassoc and extend act to reorder subterms of acommand sequence but
don't actually have any computationa significance of their own. This subsection introduces the reduction re-
lation —. (pronounced “association”) based on these rules alone and studies some of itsimportant properties.
The conversion relation based on this reduction relation identifies all command sequences having the same
commands in the same order, regardless of the way in which this sequence is built up from its subsequences
using the operator . For example, theterms (my > Xo M) X3 (M3 > X4 ‘My) and My >Xo -(Mp > X3 M) > X4 -My
belong to the same equivalence class under this conversion relation. We will show, in fact, that the most eas-
ily notated member of thisequiva ence class, my >X, My > X3 Mg > X4 -My, Which isthe —, -normal form of the
two previously-mentioned terms, serves as a useful canonical representative of the entire equivalence class.

Note. For theremainder of thischapter, the unadorned reduction arrow — will refer to the original reduction
relations defined in Chapter 2 for the cal culi A[Bo!eag] and A[Bd!laz].

Lemma3.3.1 Thereduction relation —. isweakly Church-Rosser.

Proof: Itissufficient to consider the cases in which theindividual reduction rules assoc and extend have crit-
ical overlaps with themselves or each other. The followingisan list of such cases (determined by inspection
to be exhaustive), along with the diagrammatic evidence required for each case. Thereisacritica overlap
between assoc and itself, and one between assoc and extend. There are no rewrite rulesinvolving substitution
in the definition of —.., so critical-pair reasoning can be applied without modification.

Notation. The diagrams we use to convey this proof use a good deal of notation to keep track of redexes,
an issue that will become more important in later proofs that use the same notation. In this notation, large
horizontal braces indicate the extent of the next redex to be reduced along some path in the diagram. A brace
ontop referstotheleft-hand reduction path; oneon the bottom, to theright-hand path. The redexesthemselves
are marked by overlining or underliningthe term-constructorsthat match theleft-hand side of areductionrule.
The marks remain on the term-constructors until the corresponding rule is applied; the location of the braces
and of the lines are not intended to correspond. The arrow denoting the application of a rule that reduces a
marked redex is marked the same way as the redex being reduced. Solid arrows denote reductions which are
givenin the hypotheses of a proposition; dotted arrows denote reductions which must be constructed to meet
aproof obligation.

Case (1) A;: assoc; Ay: assoc
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The one possible overlap between the rule assoc and itself isthe following:

(N1>X2 (N2 >3 N3)) >Xg Ny

&
‘

(N1 5% N2) 5% (N3 >xa Na) -assoc

Y

N &% '((Nzﬁ'Ns)m'Nd

"«
Np > X2 (N2 > X3 (N3 >Xg Ny ))

Case (2) A;: assoc; Ay: extend

Rule assoc overlaps rule extend as follows:

(VNn) 5% No ) oXa N

\e~xtend

assoc (W.(N1 > X2 N2 )) >x3-N3

(WN) 5% (N b X3 Na) extend

e
W.((N1>x2 Np) X3 N3)

extend "
. assoc
TR

W.(Nl > X2 ~(N2 > X3 Ng))

Since al critica overlaps between redexes can be reconciled, the weak Church-Rosser property follows by
the usual argument involving non-overlapping redexes given in Section 3.2.

Althoughwemust defer acompl etediscussionto Section 3.4, thediagrams used inthe proof of Lemma3.3.1
contain the justification for the factoring of the reduction relation that we are now carrying out. The detail to
note is that the right-hand path in each diagram requires the reduction of aredex that was not present in the
origina term in order to re-establish one of the original redexes.

Lemma3.3.2 Thereduction relation —. is strongly normalizing.
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Proof: Thisis amost obvious, but we give a formal proof anyhow. We define a positive integral measure
on termsthat isstrictly decreased by each assoc- or extend-reduction. Thisimpliesthat every such reduction
sequence must terminate.

We define the measure M [ ]| viathe equations

M[x] = 1 M[f] = 1
Mv] = 1 M[MexN]] = 2M[M]+M [N]
M[c"] = 1 MwM] = 1+M[M],

where it isunderstood that M [ ] is additive on all other compound terms. Notethat M [M] isat least 1 for
every term M.
Wenow show that M []| decreases under —. ; that is, that if M —.. N, then M [M] > M [N]. Wehave one
case to consider for each of the two reduction rules defining —. .
Case (l) assocC: (Ml >Xo ~M2) >X3-M3 = M1>Xo Mo >X3 -M3.
In this case, we calculate

M[(Miex2-M2)exg-M3z] = 2M[Myexe -Ma]+ M [M3]

= 2(2M [M1]+M [Mz]) + M [Mg]
4M [[Ml]] +2M [[Mz]] +M [[Mg]]
2M [[Ml]] +2M [[Mz]] +M [[Mg]]
M [M1 X ‘M X3 -M3].

\%

Case (2) extend: (W.M1)p>Xo My — W.M1 X M.
In this case, we calculate

M [[(VV.M]_) > Xo ~M2]] 2M [[VV.M]_]] +M [[Mz]]
= 2M [[Mﬂ]-i—M [[Mz]]+2
2M [[Ml]] +M [[Mz]] +1

M [[VV.M]_ > Xo ~M2]].

\%

Inthefirst case, the inequality depends on knowingthat M [M] isalways greater than zero. The decrease
in M [M]], which we have demonstrated for redexes only, extends to entire terms by noting that the measure
of subterms always contributes positively to the measure of a superterm. Since M [[]| decreases at every step
yet remains bounded bel ow by 0, the number of steps must be finite. i

Theorem 3.3.3 Thereduction relation —.. is Church-Rosser.

Proof: Thisfollowsby Newman'sLemma (Proposition 3.2.5) from Lemmas 3.3.1 and 3.3.2. 1
Notation 3.3.4 Wewill denote the —. -normal formof atermM by |.. M].

Definition 3.3.5 The equivalence relation =, association equivalence, is the equivalence closure of —, .
Proposition 3.3.6 Therelation = isdecidable.

Proof: Theconfluence of —, impliesthat termsrelated by = shareacommon, unique—s. -normal form. Since
all —. -reduction sequences terminate, it is sufficient to reduce two candidate terms to —. -norma form and
check for syntactic equivalence. i

The next proposition establishes that the reduction relation —. possesses a standard reduction order for
reduction to normal form.
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Definition 3.3.7 A deterministicreduction strategy isan effective procedurethat, given aterm, returnsa redex
withinthat termif thereis one and otherwise indicatesthat the termisin normal form.

A normalizing reduction strategy is one that, when iterated starting with any term, always|eadsto a nor-
mal form (if one exists).

Proposition 3.3.8 (Standardization) There exists a normalizng deter ministic reduction strategy for —-. .

Proof: The reduction relation —. is both confluent and terminating, so any method will work as long as it
identifies a next redex when one exists. To construct a deterministic such method, define an ordering of sub-
terms for each syntactic construct, use this ordering to define a preorder traversal of subterms, and stipulate
that the first redex encountered in thistraversal isthe next to be reduced (Definition 3.7.1 gives an example
of such an ordering). i

Unlikethe standardization theorem for the purelambda-cal culus (see [Barendregt, 1984], Theorem 11.4.7)
Proposition 3.3.8 does not promise a standard reduction sequence from M to any reduct of M whatsoever.
However, this wesker theorem suffices for our purposes.

Having now introduced the important properties of the relation —. , we are now ready to discussitsin-
tended application.

3.3.2 Themaodified computational reduction relation —

The definition of —. in Section 3.3.1 alows us to define a new reduction relation capturing only the essen-
tial computational meaning of the original reduction relation for the calculi of concern. We define the new
reduction — (which we will call “computational reduction” or “reduction modulo association”) by asimple
construction on the quotient set of terms under the equivalence relation =.

Thefollowingdefinitionsoverl oad the notation — , but each context of use will make clear which meaning
isintended.

Definition 3.3.9 (—: on terms) Thereductionrelation — on termsfor A[3d!eag] and A[Bd!laz] isdefined by
all therulesin Figures 2.15, 2.17, and 2.18 except assoc and extend.

Notation 3.3.10 Weuse [M] . to denote the Z-equival ence-class containing a representative term M.

Definition 3.3.11 (— on classes) The reduction relation — holds between =-equival ence-classes of terms
whenever — holds between some pair of representatives, thatis, [M] - — [N] - if and onlyif thereexist terms

M’ and N’ suchthatM = M/, N= N, and M’ — N.

Definition 3.3.11 appearsto makeit very difficult to compute—, on classes—surely we cannot be expected
toseewhereevery — relaionfromevery element of [M] . leadsjust to seeif onehappenstoleadtoan € ement
of [N]»! We will see below, however, that Proposition 3.4.1 and Corollary 3.4.2 give us an easier way: any
— -redex present in any termin [M] . is aso present in |, [M]. Therefore one reduction step under this new
reduction relation can be computed by one reduction step via any rule except assoc or extend, followed by a
reductionto — -normal form. Lemma 3.3.2 guaranteesthat thisnormal formexists; Theorem 3.3.3 guarantees
that the new relation is uniquely defined.

The process just described uses the common, unique —. -norma form shared by al elements of such an
equivalence class as the canonical representative of the class. Finding such a representative is computable
(Proposition 3.3.6), so the possibility of nontermination resides entirely in the new reduction relation — . In
the sequel wewill often use thisconception of aternating —. - and — -reductionsto blur theformal definition
of — and work directly with the underlying reductions on the origina term language.

For an example showing how — differs from —, consider the reduction of theterm

(AX.X>yT)e(p>2q).

Under —, thisterm reduces viaf3 to
(przQ)>y,
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which isitself an assoc-redex; reducing thisredex is counted as a second reduction to the final result
p-zqeyr.

In contrast, under — we are working with =-equivalence classes of terms. Theintia termisin =-normal
form; itsreduct, however, containsthe —.. -redex just pointed out. The —-reductions inducethe one-step — -
reduction

[(AX.xeyT)e(p>zq)]. —n [przqeyr]..

Someprecedents. Thesinglingout of —. asanon-computational subset of the overall reductionrelationis
somewhat reminiscent of the “ structural congruences’ employed in the exposition of the polyadic Tecalculus
in[Milner, 1991]. There (as here) the axiomsin question are essential for definining computations, but do not
themselves model the progress of a computation.

Thereisalso an analogy between the definition of — and the a-renaming convention adopted in [Baren-
dregt, 1984]. Under the o-renaming conventionwe agree to give all bound and free variables different names
before each reduction step. This convention sweeps the complex process of renaming variables under therug,
but alows us to avoid painfully endless invocations of the phrase “ up to a-equivaence” aswell as numerous
side-conditionsto the effect that a particular variable does not occur free in a certain subterm. Terms are thus
regarded as representatives of their a-equivalence class, the classes being the true computational objects.

Likethe a-renaming convention, the definition of — requires usto think in terms of equival ence classes
of terms. This definition folds this (dight) complexity into the basic notion of reduction, but alows us to
avoid complexity elsewhere. When using —, we consider terms as representatives of their —, -equivalence
classes, the classes being thetrue computational objects. Corollary 3.4.2 providesthefoundationfor thisview
of — -reduction.

3.4 Keepingtrack of redexes

The proofs of the Church-Rosser and standardization properties depend ultimately on the details of the ways
inwhich different choices of reductions can be reconciled. Proving the Church-Rosser property requires that
such reconciliations always exist; proving standardization requires that interchanging the order of reductions
so asto fit the definition of standard order is aways possible. In this section we present the basic definitions
for keeping track of reductionsin support of these proofs. In Section 3.5 we apply these techniquesto gather
information about the reduction relationsin A[3d!eag] and A[3d!laz].

3.4.1 Marked reductions

The basic tool for keeping track of redexes, aready introduced in the diagramsfor the proof of Lemma 3.3.1,
istolabel theterm-constructorsof redexeswith distinctivemarks.! The marksfor aparticular redex are erased
when that particular redex isreduced but not when other redexes arereduced. For example, thefollowingterm
has two (-redexes, marked with overlines and underlines respectively:

Ax.(A\y.y) sX) ez

A [-redex is specified in terms of two syntactic term constructors: one for the application term-constructor,
one for the A-abstraction term-constructor. Both are marked, and both disappear when the redex is reduced.
When the underlined redex above is reduced, the resulting marked term is

(Ay.y)sz

Theformal specification of the concept of marked redexes and marked reductionsisbest | eft as a sketch—
afull development yields no great advantage in precision. The addition of marks creates a new language of

1The marking technique presented here is adapted from [Barendregt, 1984], Chapter 11.
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terms, with a lifting function that embeds terms from the original language into the marked language as un-
marked terms, and an erasing functionthat providesamapping inthereverse direction by forgettingthe marks.
Reduction rulesfrom the unmarked language are lifted to the marked language as already discussed; the addi-
tion of theserulesturnsthe marked language intoa calculus. Every reduction sequence inthe marked cal culus
isreflected in the unmarked calculus by erasing the marks.

The converse, that al unmarked reduction sequences can be lifted into the marked calculus, is not true;
thisfact underliesthe technical usefulness of the marking technique. Of course, it takes atheorem to show that
this converse does not hold, but the basic ideais easy: reductions destroy marks but cannot create them, so
sequences consisting only of marked reductions are finite. On the other hand, untyped lambda-cal culi admit
infinite reduction sequences.

The syntactic form of our store-computation redexes introduces a complication not present in the basic
lambda-caculus A[Bd]. In A[Bd], B- and &redexes cannot overlap in the sense of sharing a syntactic term-
constructor. For example, any (3- or d-redex in the term (Ax.M) e N over and above the redex that is the root
of the term must lie entirely within one of the subterms denoted by the metavariables M and N. It isnot so
in either of our lambda-calculi with assignment. An exampleisthe term (? N1 5%z N2 ) >x3 ‘N3, in which we
have marked with an underlinethe constructors of terms defining an assoc-redex and have marked with aline
abovethe constructorsof terms defining aunit-redex. Wehave giventheterm constructor X, - bothmarks. To
accommodate overlapping redexes, we must formally require that our terms be marked with sets of marks, and
that the mark for a particular redex appear in the mark-set for all and only those subterms which characterize
the redex. We call terms marked with the empty set unmarked even when they are considered as elements of
amarked calculus. The uses of the marking apparatus that actually appear in the ensuing proofs actualy use
no more than two marks.

The marking technique as presented so far is only applicable to a calculus defined directly in terms of
reduction rules. In order to use marked terms in the proofs we actually want to carry out, we need to show
how marked reductionsinteract with the definition of — interms of =-equivaence classes. This adaptation
isthe topic of the next subsection.

3.4.2 Interaction of —, with marked computational reduction

Wenow state and provearesult that letsus reason with the computational reduction — inafairly simple man-
ner. Although the method of defining — by carrying out a —. -normalization after every — -step is concep-
tually simple, it can lead to complicated proofs. The following result gives us some leeway in the placement
of —. -steps with respect to — -steps when constructing proofs: it shows that we can always choose to per-
form some of the —. -reductions before a — -reduction without changing the interpretation of the reduction
sequence in terms of =-equivalence classes.

Proposition 3.4.1 (Commutation of association) Supposewehave M — N via reduction of a marked redex
A, and suppose also that M —, M’. Then there exist terms M” and N' such that M'—. *M”, N—, *N', and
M" — N by reducing A", where A" istheresidual of AinM”.
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Proof: The existence of A" ispart of what we have to prove. It is possible that aresidua of A might not be
aredex, but the proof will show that it will aways be possible to re-establish redexhood via a further —. -
reduction. Thisfact iswhat makes Proposition 3.4.1 useful.

Following the general pattern of argument givenin Section 3.2, we argue by acase analysison thereative
positionsof the —, - and — -redexes, and a so consider the particular rules defining the redexes.

The arguments reducing the case analysis to cases of critical overlap are valid in this case because the
reduction rules defining —. are obvioudy substitutive. We now proceed to examine the critical overlaps
between —. -rules and — -rules. We prove each case by means of a diagram in which we mark the term-
congtructors of theredex A. The diagrams themselves correspond to the diagram that states the theorem.

Case (1)

(IM1pXp M2)>x3-M3
| ——

assoc

unit TM1pX2 (M2 >X3 -M3)

My /%] (M2 X3 -M3)
= ([M1/x2]M2)>x3 M3

The syntactic identity ([M1 /%] M2) >x3 M3 = [M1/%2] (M2 >3 -M3) holds because there can be no
occurrences of Xz in M3, which was outside the scope of x; in the original term M. The o-renaming
convention (Section 2.1) assures that no free occurrences of x, have been introduced.
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Case (2)

(Vi=My; (V202 M2)) X5 M3

assoC
fuse
vi=My; (V20X Mz) > X3 Ms)
(vVi=My; M1 /%] M2) X3 M3 ass0c
;
vi=My; (22Xp (M2 X5 Ms))
ass0C- |

- fuse
< >
V.= Ml; [Ml/Xz] (Mz > X3 ~M3)
= v:=My; ([Ml/Xz]M2[>X3~M3)

The syntacticequivalence of thetwoformsgivenfor thefina termisagain justified by thea-renaming
convention.

Case (3)

(Vi= My; (W2eXp M2)) X3 M3

bubble-assign assoc

(W?> X -(Vi=Mg; Mo))pxz- Mz vi=My; (W2 X M) >X3-M3)

assoc- .assoc
: '
Y

w2 X -((Vi= I\/il; Mz)ex3 M3)  vi=My; W2e X (M2 X3 -Ms))

assoc - . bubble-assign

o »
W2 Xo ~(V:I M1; Mo X3 ~M3)
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Case (4)

(VEM]_&~M2)[>X3~M3, (Xz EfVMz)

N—_———
\SSOC

assign-result| V:i=M1>X2 (M2 >x3-Ms),
(Xz € fVMz)

. ‘assign-result

V.= My; [()/Xz] Mz) >X3-M3
= Vv.=My; [()/Xz] (Mz > X3 ~M3)

The last reduction again depends on the fact that there can be no occurrences of x, in M3.

Case (5)

(W.(W2ex1 ‘My)) X2 My

N— ——
bubble-new extend
(W?X1 - W.M1) X -M> W.((W2> X1 ‘M1) >X-My)
assoc: .assoc
: Y
Y
V\f?[>X1~(VV.M1)[>X2 ‘Mo w.(\/\/_?bxl ~(M1 > X2 Mz))
N— —— —
extend - . bubble-new
S

W2 X1 ~(VV.(M1 > Xo Mz))

Case (6) Wenow consider the purification rules. For A[Bd!eag], theform of the prefixes S¥9[] precludes any
overlaps between pure-eager-redexes and —. -redexes—the store-prefixes alowed in pure-eager-
redexes arein — -normal form. Wethushave only to consider pure-lazy-redexes. Wefirst consider
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theinteraction of pure-lazy with extend.

pureSF[(vw.M) &x-SE2[t (Ay.N)]

pure-y \end

Ay.pure SP[(vw.M) >x-SE[ N]] - pureSFw.Mex-SE[t (Ay.N)]]

extend - - pure-lazy

Ay.pureS#wv Mo x-St N]|

The cases involving the rules for purifying constructed values and primitives, as well as the corre-
sponding cases involving assoc, behave anal ogoudly.

The completion of this case analysis concludes the proof of Proposition3.4.1. i

Asacorollary to Proposition 3.4.1, we can show that a —. -normal form contains every — -redex present
in any member of its =-equiva ence class. Hence these normal forms make a handy canonical representative
of the class when one is needed.

Corollary 3.4.2 (Completeness of —. -normal form) If Aisa— -redexwithinany termin a =-equivalence
class [M] -, then there exists a residual A of A within the normal form |. [M], and A" isa redex. Moreover, if
M — M’ by reducing A and |.. [M] — M" by reducing &', then M’ —, *M".

Proof: In diagram form, the corollary states

M € [M]

1K

A’-'.

« o2
MII E [MII];

We need only stitch together, from upper left to lower right, occurrences of the diagram given inthe state-
ment of Proposition 3.4.1. At each step, we re-establish aresidual of A as aredex using —. -reductionsonly,
hence we stay within the equivalence class. Since —. is strongly normalizing and Church-Rosser, the pro-
cess terminates a | [M]. Starting this process at every element of [M]. shows that every marked — -redex
of every terminthe equiva ence class is represented by aresidual redex in the normal form that characterizes
theclass. i

It should be noted that Corollary 3.4.2 does not state that M” = . [M']: thisisn’t true. For an example,
consider theterm

(AY.y> X2 Zp) @21 >X3 Z3.
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Thistermisin —. -normal form, and so can play theroleof both M and |.. [M] inthe statement of the corollary.
However, reducing the B-redex yields (in therole of M’)

(Zl >Xo ~Zz) >X3 73,

which isnot in —. -normal form, being indeed an assoc-redex.

A further corollary to Proposition 3.4.1 advances ustoward our goa of proving the Church-Rosser prop-
erty for our calculi. Thiscorollary allowsus to reduce the task of establishing diamond-shaped reduction dia-
gramsfor — on equiva ence classes to proving the corresponding diagrams on terms. We will show later (in
Lemma 3.5.5) that thewesk Church-Rosser propertiesdoesin fact hold for terms, and hence (by thefollowing
result) for equivalence classes.

Corollary 3.4.3 (Diamond-lifting) If the property implied by the diamond diagram
M
My M2

Ms (3.1)

holdsfor — ontermsin A[Bd!eag] or A[Bo!laz], then the corresponding diagram

M] =
M1]= M2]-
fgﬂg]:z‘ | (32)

holdsfor — on =-equivalence classes in the same calculus.

Proof: Suppose we are given the solid arrows in the diagram (3.2). By Definition 3.3.11, this implies the
existence of reductionsM’ — M}, M" — M3, where M’ M" € [M] ., M} € [M1]:, M§ € [My]. . By Corol-
lary 3.4.2, similarly-marked reductionswill be available starting from the singleinitia term | [M]. Since we
are assuming that the reduction on termsisweakly Church-Rosser (diagram (3.1)), we are given the two dot-
ted reduction sequences ending in the same term, and hence (using Definition 3.3.11 in the other direction) we
obtain the dotted reduction sequencesin diagram (3.2). i

3.5 Strongfinitenessof developments modulo association

We now set out to prove the strong finiteness of developments modulo association via Newman's Lemma
(Proposition 3.2.5) for our two calculi. We first define our terms, and then proceed in subsection 3.5.1 to
prove that the marked version of — is weakly Church-Rosser on terms. We address the termination issue
in subsection 3.5.2.

This section isconcerned with thenotion of developmentsof atermin A[38!eag] or A[3d!laz]. Wegivetwo
definitionsof thisnotion: thefirst issomewhat easier to understand; the second relates to the proof techniques
we actually use.

Definition 3.5.1 (Developments) Given atermM and aset F of redexes that are subterms of M, a develop-
ment is reduction sequence starting with M in which only members of F or their residualsare reduced.
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Definition 3.5.2 (Developments) Given a term M in the marked calculus, a development is a sequence of
marked reductions starting with M.

In both cases, we sometimes use the term “development” informally to refer to thefina terminthereduc-
tion sequence that forms a devel opment.

Corresponding to the two definitions of developments, we give two definitions of the important notion of
compl ete development.

Definition 3.5.3 (Complete developments) A complete development of aterm M relativeto a set of redexes
F isoneinwhich all the members of F are reduced.

Definition 3.5.4 (Complete developments) A complete development of aterm M is one in which all marks
areerased.

The weak finite-devel opments property can perhaps best be thought of in terms of its contrapositive state-
ment: any infinite reduction sequence must create new redexes.

35.1 Theweak Church-Rosser property

In this subsection we establish that marked — -reductions for A[3d!eag] and A[3é!laz] are weskly Church-
Rosser onterms; Corollary 3.4.3 will then establishthewesk Church-Rosser property for marked — on equiv-
alence classes.

Lemma 3.5.5 The weak Church-Rosser property holdsfor the calculi A[38!eag] and A[3d!laz] under marked
—» -reduction on =-equival ence classes.

Proof: Weconsider all thecritical overlapsbetween al the —, -rulesin both our calculi; we show that in every
case the diamond can be completed. In contrast with the proof of Lemma 3.3.1, we are now dedling withrules
involving substitutionso we cannot rely completely on critical-pair reasoning. |nstead, wewill havetoaccount
carefully for the interaction of substitutionsarising from 3-, unit-, fuse-, and assign-result-redexes.

Case(1): A1 B A2 B
There are two ways a 3-redex can be embedded within another: in the function subterm or in the
argument subterm of the redex’s application. We consider the two cases separately.

(i) The first way in which two [-redexes can interact has the inner redex within the function-
subterm of the outer redex.

)\Xl C )\Xz Pz Ql
[Ql/Xl]qO\Xz P)e >CQZ o] Po]) 8 O
= ([Qu/%]O[(A%.[Q1/x1]P) ¢ [Q1 /x1] Q2]
B

([Qu/x]O[[[Q1 /*1] Qz2/%2] ([Q1/X1] P2 )]
([Q1/x1]O)[[Q1/%1] [Q2 /%] Po]
[Q1/X1]d[Q2 /%] P]

This diagram is rendered nonobvious by the fact that substitution is not a term-constructor
but rather ameta-level operator that denotestheterm that isthe result of the substitution. The
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second form of the intermediate term on the left-hand leg of the diamond diagram above em-
phasi ses thisfact, and the equivalence in the final termin the diagram is a consegquence of the
Substitution Lemma (Lemma 2.1.2). We use the notation ([M/x] C)[] to stand for the context
that is derived from the context C[ ] by substituting as indicated.

(if) The second way inwhichtwo -redexes may interact hastheinner redex in the argument term
of the outer redex. The following diagram shows how the requirements of the weak Church-
Rosser property are established in this case:

)\Xl Pl )\Xz Pz

AN

[Cl(Ax2.P) Qz /X1 Py (Ax1.P1) « ([Q2 /x2] P]

'-_l3

T ™

! .a ,.
Cl[Qz/x2] P] /1] Py

Here the lower-left arrow in the diamond has a double head because there may be multiple
occurrences of x; in Py, leading to multiple occurrences of the second (3-redex to reduce.

All the other interactions of rule 3 with other reduction rules follow one or the other of these pro-
totypes, so we do not work out al the diagrams for those cases explicitly.

Case (2): A1: B Ap: dWegiveonly the caseinwhich the 3-redex enclosesthe d-redex. The caseinwhichthe
enclosurerelationshipisreversed presents no difficulties due to substitution. We al so give only the
form of &-rule dealing with an abstraction as an argument, since therulesfor constructed arguments
have the same form.

)\Xl C

S

[Q/x1] [ )‘y M)] (Ax1.C[N; o (Ay.M)]) ¢ Q
= (Q/xd] )[ (7\)/ [Q/x]M

3 B

[Q/x]C[Nt o (Ay.M)]
= ([Q/x1]O[Nf o (A\y.[Q/x1]M)]

Case (3): Az: unit; Ap: any
The rule unit behaves just like [3, so this case is proved in the same manner as Case 1.
Case (4): Aq: fuse; Ay: any

Case (5): A;: bubble-assign; Ay: any



Case (6):
Case (7):

Case (8):
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Aq: assign-result; Ay: any

A;: bubble-new; Ay: any

There are no critical overlapswhen any of the just-mentioned rul es define the outer redex, so com-
pleting the diamond to show the weak Church-Rosser property istrivial in all these cases.

A;: pure-eager or pure-lazy; Ay: any

The purification rules clearly have no overlaps with the rules 3 or 8, since the left-hand-sides are
based on different syntactic constructors. Also, since the purification rules contain no nested in-
stance of pure, thereisno overlap between purification rules and themselves. We are thus reduced
to considering interactions between command-related rules on the one hand and purification rules
on the other.

In order to do this, we must consider the particular form of the store-contexts §] for each calculus.
For the eager calculus, we have
S = ]
|  w.S™]]
| vi=M; S,

It is clear from this definition that eager store-contexts do not overlap with rule unit, since these
contexts can only have assignmentsto the left of ar operator. Nor can eager store-contextsoverlap
with the | eft-hand-sides of the rules fuse, bubble-assign, identical, or not identical—by design, al
the reduction potential of an eager store-context has been exhausted. Since there are no overlaps
involving pure-eager, thereis no need to consider thisrulein detail to establish the wesk Church-
Rosser property.

For A[Bd!laz] with its purification rules pure-lazy, the situation is different. Equally by design, the
lazy store-contexts S%(] can contain redexes that overlap with the context’s command sequence.
We now consider each such possible overlap.

We simplify our consideration of these cases in two ways. First, we write these cases with only the
minima amount of store-context necessary to show the overlap; it is not hard to see that the con-
structions hold when the overlaps occur in the midst of longer store-contexts. Second, we consider
only the purificationrule applying to abstractions: thissaves usthesdlight complication arising from
theduplication of the pure-context that isprescribed by therule pure-lazy when theresult valueisan
application of aconstructor of morethan oneargument. Thisduplication requiresthat thelower-|eft
leg of the corresponding diamond be a multistep reduction consisting of one independent applica-
tion of the non-pure rulefor each occurrence of the pure-context. The essential reasoning, however,
is conveyed by the following simple cases.

(i) Ap: pure-lazy; Ay: unit

pure(t M1) X1 (Ay.M2)

pure-lazy \ﬁ

Ay.pure(f M) 5%+ M, pureMy /x| T (Ay.M2)
puret Ay.[My /X] M)

unit - . pure-lazy

e
Ay.puret My /X M2



(i) Aq: purelazy; Ap: fuse

purevi=N; V25X 4 (Ay.M)

pure—la% \E—se

Ay.purevi=N; V25Xt M purev:=N; [N/ (1 (Ay.M))

= purev:=N; T (Ay.[N/x] M)
fuse " . . pure-lazy

R

Ay.purev:i=N; 1 (IN/X] M)

(iii) Az: pure-lazy; Ay: bubble-assign

purev= T (Ay.M)
pure-y wble-assagn
Ay.purevi=N; w25 X- ™ purevW>xv =N; T (Ay.M)
N
“ '

Ay.purew?>-xv:=N; TM

(iv) Ap: pure-lazy; Ap: assign-result

purevi=N&X 1 (Ay.M)

pure-lazy \\ssign-rewlt

Ay.purevi=N&X-1tM purev:=N; [()/X] (T (Ay.-M))
—————

= purevi=N; 1 (ry.[() /X M)

assgn-result - . pure-lazy

.‘- »

Ay.purev:i=N; 1{() /X M



45

(V) Ap: pure-lazy; Ay: bubble-new

pureww?sx-1 (Ay.M)

pure-la/ bubble-new

—_—~
Ay.purew w?sxX-1 M purew?s>x-w.1 (Ay.M)
bubble-nev\./' ) . pure-lazy

o,
Ay.purew?>X-w.t M

This concludes our consideration of the overlaps involving purification rules.

We have now shown that the diamond can be completed for al overlapping occurrences of rules for — in
both A[3d!eag] and A[Bd!laz], and hence that the weak Church-Rosser property holds for both calculi.
| |

Now that we have used marked reductions in a proof we can complete our remarks on the necessity of
factoring the reduction relation. Aswe noted after the proof of Lemma 3.3.1, the diagramsinvolved in prov-
ing that lemma required some unmarked reductions. In the proof we have just completed for Lemma 3.5.5,
however, all the diagramsinvolve only marked reductions, as they must in order to establish atheorem about
marked reductions. Had we not factored the reduction relation, the diagrams from Lemma 3.3.1 would have
formed a part of a (fallacious) proof of Lemma 3.5.5. This state of affairs was allowed to stand in [Odersky
and Rabin, 1993]; we offer the complexitiesof the present chapter as acorrection. Of course, the error isonly
one of proof, not result (as we now show), but the structural insight provided by factoring the reduction was
felt to be interesting enough to justify pursuing this course.?

3.5.2 Finitenessof developments

With the weak Church-Rosser property in hand for the marked calculi modul o association, we now turn to
proving the termination of developments modulo association.

Itisconvenient for the purposes of thissection to notethat thereduction rulesof our calculi fall into several
well-defined groups according to the kind of rewriting they specify:

e Therulesf, fuse, unit, and assign-result substitutiverules, sincethey all replace occurrences of abound
variable by a given expression to model value-passing in a programming language. These rules may
cause the duplication or delection of the term representing the passed value.

o Therules bubble-assign and bubble-new, act alike to axiomatize the non-interference of operationsin-
volving different locations. These rulesre-order subterms, but do not duplicate or delete them.

o All thepurificationrulesform acategory on their own. These rulescan duplicate or delete the subterms
forming the store context.

Toshow that every devel opment (modul o associ ation) isfinite, we adapt thewei ghting technique of [ Baren-
dregt, 1984], Section 11.4. The technique as used in the cited source only deals with the 3-rule, but we use
it without change for al the substitutiverules. Thisisthe only hard part, since the possibility of duplication

2For an exampleof work in which an alternative tack was chosen in the face of theidentical problem with amodified lambda-calculus,
see[Ariolaet al., 1995].
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W[X"] = n
Wl = 1
WI[f"] = n
WAM] = W[M]
WiMieM] = W[MiJ+W [M;]
Www?ex-M] = 1+W [w?sxvv.M]
Wilv==w] = 1+W[AxAy.y]
Wilv==v] = 14+W [AxAy.X]

W vi=Mg; w2e X ‘My]

W [pureS™I[} (
W [pureS* (

1+W [w?eX vi= M1; My]

"oMie-eMJ]] = 1+W [C"e(pureS=[tMy) e - o (pureS?9[t My)]
"eMie-eMJ]] = 1+W [c"e(pureS¥tMy) e o (pureS¥ My ]
(and so forth for the other purerules)
W ] is additive on the subterms of all other terms.

C
C

Figure 3.1: Definition of the weight function.

of subterms in these reductions leads to some concern that the duplication of marked redex subterms might
outruntheir elimination through marked reductions. That thiscannot actually happen isnot obviousandisthe
point of the present proof.

For all the other rules, we merely count the number of marked redexes in the start term of the devel opment
in the weight of aterm.

Theweight functionW []] on marked termsisdefinedin Figure3.1. Thefunction W [[]] isactually defined
on a dightly modified calculus in which variables and primitive function names bear weights: the notion of
erasing weights to recover the origina calculus is straightforward from an informal description. Note that
W [M] isawaysat least 1. Thedefinitionof W [ isdesigned to decrease on each reduction of amarked redex.
For substitutiveredexes, this means that it should be possibleto arrange to have the wei ghted occurrence of
the subgtitution variable have a greater weight than the substituted expression; thisis the reason for having
weighted variables. For &-redexes, we want to be able to weight the primitive function name more heavily
than anything that might replaceit. For theremaining kindsof redex, wejust definetheweight to be 1 greater
than the reduced form.3

We will be concerned only with terms whose wei ghtings have aspecia property contrived to make reduc-
tionsinvolving substitution and primitive function definitions decrease the weight of aterm. The following
definition requires that substitution reductions must reduce the weight of aterm. There are five cases because
the calculi A[Bo!eag] and A[Bd!laz] have five kinds of substitutive redex.

Definition 3.5.6 A term M hasa decreasing weighting if the following conditions on marked-redex subterms
all hold:

1. for all marked B-redex subterms (Ax.M3) ¢ My, for all X" in My, we have n > W [M3],
2. for all marked &-redex subterms f" e V for which &( f, V) isdefined, we haven+W [V] > W [( f, V)],
3. for all marked unit-redex subterms{Mj >, ‘M2, we have, for all X" in My, n > W [M4],

4, for all marked fuse-redex subtermsv:=Mj; V?>x, ‘My, for every free occurrence of x," in My, we have
n>W [[Ml]]

3In [Odersky and Rabin, 1993] the authors expend a great deal of effort in designing a weight function that decreases under even
statically unknownpure-eager-reductions. Thisisunnecessary—all therelevant redexesmust beknown in advancein order to bemarked.



47

5. for all marked assign-result-redex subterms (v:= M1 X, M3), X2 € fv My, for each x," in M, we have
n>WI[0O)].

Sincethecal culi for which wewant to provefiniteness of devel opmentsare actually defined on equivalence
classes of terms, we must establish that the definitions of weightingin Figure 3.1 and of decreasing weighting
in Definition 3.5.6 are independent of the chosen representative of the =-equivaence class. To do this, we
merely insist that thedefinitionsapply to aparticul ar representative, the —. -normal form. Sincethedefinitions
arelargely concerned with marked redexes, and Corollary 3.4.2 showsthat al such redexes are present in the
—-normal form of aterm, the definitionisjustified.

Withthe definitionsof theweight function and of decreasing weighting in hand, the proof that every devel-
opment terminates now splitsintothree parts. decreasing weightingsexist, weights decrease under reduction,
and reductions preserve decreasing weightings. Thefirst two parts(Lemmas 3.5.7 and 3.5.8) are nearly trivial;
thethird (Lemma 3.5.9) takes some work.

Lemma3.5.7 Every marked term can be given a decreasing weighting.

Proof: By working from the fringe of the syntax tree toward theroot, itis clearly possible to assign to every
bound-variable occurrence and to every primitive-function occurrence in aredex aweight sufficiently highto
meet the conditionsin 3.5.6: thetermto be substitutedisvisibleand wel ghted before each variableisweighted,
and we just assign the variable occurrences higher weightsthan the term to be substituted. i

Lemma3.5.8 If atermM; hasa decreasing weighting, and My — My, then W [M] > W [M_].

Proof: Thisholdsby the construction of thefunction W [ ]| and by the definition of decreasing weighting. We
have defined W[ ] such that the substitutive reductions decrease the total weight owing to the definition of
decreasing weighting, and such that the non-substitutive reductions decrease theweight by 1.

Lemma3.5.9 IfatermM; hasadecreasingweighting, and M1 — M, then theweighting of M, isdecreasing.

Proof: Sincethe substitutiverulesare all similar, we can capture the argument by the general reasoning sug-
gested by the proof on pp. 288-290 of [Barendregt, 1984]. Sincethe other reduction rules do not ater substi-
tutive redexes, the decreasing property of those redexes isleft intact. i

Taken together, Lemmas 3.5.8 and 3.5.9 imply that devel opments are finite, and hence we have the fol-
lowing result.

Theorem 3.5.10 For each of the calculi A[3d!eag] and A[3d!laz], all devel opments modulo association ter-
minate.

35.3 Strongfiniteness of developments
We now wrap up this section by stating and proving its main result, of which Theorem 3.5.10 forms a part.

Theorem 3.5.11 Computational reduction on =-equivalence classes in \[B3!eag] and A[B8!laz] is Church-
Rosser.

Proof: By Lemma 3.5.5, the reduction relations in question are weakly Church-Rosser. By Theorem 3.5.10,
thesamerdationsare strongly normalizing. Hence by Newman’'sLemma (Proposition 3.2.5) they are Church-
Rosser. 1

The results we require from all thiswork can now be stated:
Theorem 3.5.12 Let M beaterm, and let F C M be a set of redexes that are subterms of M. Then
(i) All developmentsof F C M modulo association arefinite.

(ii) Any developmentsof F C M can be extended to a compl ete devel opment modul o association.
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B[l == [ | EJeM | feE[]

Figure 3.2: Evaluation contextsfor A[33].

E[] = ---(Figure3.2)---
|  E[]lexM | MexE[] | E[]:=M | E[]?
|  WE[] | E[]==M | v==E[] | pureE[]

Figure 3.3: Evaluation contexts for both A[o! eag] and A[3d!1az]

E[] == - (Figure3.3) ---
|  pureS®™tE[]]

Figure 3.4: Evaluation contexts for A[3d!eag]

(iii) All complete developments of F C M modulo association end in the same term.

Proof: (i) Thisis Theorem 3.5.10.
(if) By the same reasoning asin [Barendregt, 1984], Corollary 11.2.22.

(iii) The marked reduction modul o association has been shown to be Church-Rosser.
| |

3.6 The Church-Rosser property

Theresultsof previoussectionsallow usto usethe method of Tait and Martin-Lof, as presented in[Barendregt,
1984], to establish the Church-Rosser property for reduction modulo association.

Theorem 3.6.1 (Church-Rosser) The calculi A[Bd!eag] and A[Bd!laz] have the Church-Rosser property un-
der thereduction relations — .

Proof: Wesketch the proof from [Barendregt, 1984]. A special reductionrelation 1 isdefined by M 7 Niif the
compl ete devel opment of M by some set of redexesisN. It isshown that the usual reduction (— in our case)
has the samettransitiveclosureas 7, and that 1 (and thereforeitstransitiveclosure) has the diamond property:
FD! playsitsrolein thispart of the proof. But the transitive closure of 7 isthe same as thetransitive closure
of —, sothetransitiveclosure of — has the diamond property, which isthe definition of the Church-Rosser
property. i

3.7 Standard evaluation order

We now turn to establishing that A[Bo!eag] and A[3d!1az] have standard evaluation orders.

Standard eval uation orders are defined by partitioning the set of redex-subtermsinto two kinds, head and
interior redexes, according to their positionin aterm. Thereisa most one head redex; &l other redexes are
interior redexes. Internal reductions neither create nor destroy nor duplicate head redexes, and residuas of
internal redexes by interna reductions are till internal. If this classification of redexes can be carried out,
then a standard reduction order can be established as the reduction of head redexes first, then internal redexes.

We will first define the appropriate concepts on terms, and then adapt the concepts to the world of =-
equivalence classes in terms of which our results must actually be proved.

Using atechnique from[Felleisen and Friedman, 1986], we specify standard eva uation orders by defining
asyntactic category of evaluation contexts E[] that serves to identify the location within aterm of the redex
subtermto bereduced next in the standard order. In order for the definitionto define adeterministic eval uation
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E[]] = - (Figure3.3) ---
| pureS#[E[]

Figure 3.5: Evaluation contextsfor A[3d!1az]

M = MieM, = M<Mi1<M;
M = XM = M<M;

M = 1tM; = M<M;

M = MipxM;y = M<Mi1<M;
M = wM; = M<M;

M = M? = M=<M;

M = Mi:=My = M<Mi1<M;
M = pureM; = M<M;

M = pureS¥ftM; = M=<M;<S¥]

Figure 3.6: Subterm ordering for defining the leftmost redex

order, theeva uation contextsfor acal culus must havethe property that every term has auniqueleftmost redex
in an evaluation context.

Figures 3.2, 3.3, 3.4, and 3.5 give the definition of evaluation contexts for A[Bd!eag] and A[Bd!laz]. As
might be expected, the only difference between the definition for A[3d! eag] in Figure 3.4 and that for A[3d!1az]
in Figure 3.5 isin the form of the store-context for the eval uation contexts with pure at the root.

The informal intent of these definitions for evaluation contextsis that store-computation proceeds from
[eft to right; terms that must be store-variablesin order to be useful are forced, but the reduction of othersis
deferred. The specid forms of evauation context involving explicit store-contexts are necessary because the
composition of the other rules will never produce an evauation context that descends inside a 1-expression,
hence eva uation specified without the special rules would never force the result of a store-computation and
would thusfail to be astandard order.

The definitionin 3.3 requires the proviso that the pattern E[] >x-M isgiven priority over M>x-E[] in de-
termining the head redex. This ordering isformalized as the notion of leftmost evaluation redex. Figure 3.6
defines an ordering < (read “isto theleft of ") of the subtermswithin agiven term. Terms precede their sub-
terms in this ordering, the main point being to pin down the relative ordering between subterms for those
syntactic constructs having more than one. The rule for pureS# M4] in Figure 3.6 takes precedence over
that for pureMy: itisnecessary force possible results before alowing store-computation to resume.

We use the ordering < to define:

Definition 3.7.1 (Leftmost redex) The leftmost redex subterm of a term M is the least redex subterm of M
according to the ordering <.

The preorder traversal specified in Definition 3.7.1 subsumes the usua definition of ‘leftmost-outermost”.

Definition 3.7.2 (Evaluation, head, internal redexes) (i) Aredex Aisanevauation redex of atermM if
M = EJ[A] for some evaluation context E[].

(if) The head redex A, of aterm M is the leftmost eval uation redex of M.
(iif) Any redex subterm of a term M other than a head redex is called an internal redex.

We denote head and interna reductions by affixing the lettersh and i respectively to arrows denoting re-
ductions.

Lemma3.7.3 If aterm M contains an evaluation redex, it contains a head redex.

Proof: Definition 3.7.2 (i) and (ii) imply thisdirectly. B
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That fact that the definitions of head and internal redex are context-dependent requires some extracarein
congtructing proofsinvolving these concepts. Whether aredex is a head redex depends on the entiretermin
which it appears, not just on itsimmediate context. For example, theterm (Ax.M) e N is head redex in itself,
but isinternal in the context of the larger term (Ay.M’) o (AXx.M) o N).

We have now defined what it means for aterm to have a head redex; we must now adapt our definitionto
=-equivalence classes. To motivate this definition, we make three basic observations about theinteraction of
— -reduction with — -reduction. First, —. -reduction does not permute the order of the subterms designated
by meta-variablesinthereductionrules, so thedefinitionof “leftmost” among those subtermsremains constant
under —.. -reduction. Second, any redex overlapping with a sequence of commands subject to —.. -reduction
remains present in the —.. -normal form of the term (by Corollary 3.4.2), and occupies the same | eft-to-right
position. Third, aredex in one element of a=-equivalence class may not correspond toaredex inall termsin
the class (it may not even correspond to asinglesubterm in al term in the class); however, by Corollary 3.4.2
—-normal forms contain al redexes that exist in any member of their class.

These considerationslead us to the following definition:

Definition 3.7.4 (Head redex for =-equivalence classes) Given aterm M, the leftmost evaluation redex of
= [M] isthe head redex of [M] . (if such aredex exists).

The main thrust of these definitions given so far in this section is to give a framework in which to prove
the followinglemma, which guarantees that any reduction relation deduced viaany reduction sequence what-
soever can aso be justified by a reduction sequence consisting of head reductions only followed by internal
reductionsonly:

Lemma3.7.5 (Global Interchange Lemma) If M —* N, then there exists aterm M’ and head and internal

reductions such that M

7
M- i < N-

The rest of thissection isdevoted to the work of proving thislemma, from which the standardization the-
orem follows straightforwardly. Following Barendregt’ s Section 11.4 as our guide, we approach the proof of
Lemma 3.7.5 by way of auxiliary resultsthat characterize the way the distinction between head and internal
redexes behaves under internal reductions. The following lemmas state that internal reductions do not create
head redexes (Lemma 3.7.6), that they preserve an existing head redex (Lemma 3.7.7), and that they preserve
internal redexes (Lemma 3.7.8). These facts, taken together, are enough to establish Lemma 3.7.5.

Although Barendregt takes only a few linesto establish these lemmas for the pure lambda-calculus, our
proofswill occupy several pages. The added complexity derivesin part from the larger syntax and rule sets

of our calculi and in part from our need to consider =-equival ence classes of terms instead of terms pure and
simple.

Lemma3.7.6 (Headsdon’t sprout) If M —; N and [N] - hasa head redex Ay, then [M] - has a head redex.

Proof: Assume that MAN N, and that L istheresult of reducing A. By Proposition 3.4.1 and Corollary 3.4.2,
the normal form |.. [M] containsa— -redex A’ that isaresidual of A such that the following diagram holdsfor
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someterm N :

/\
S

J-[NJ

Wewill refer to the subterm of N’ that isthe result of reducing A’ asL’. The diagram permits us to consider
A and L' instead of A and L, sincethese two terms reflect essentially the same reduction relating the two —, -
equivalence classes.

By Definition 3.7.4, A, isin head position within |..[N]. The defining reduction rules of —., assoc and
extend, neither create nor destroy syntactic structure but only rearrange it. It is thus reasonable to trace the
pieces that make up A, backward to find the collection of subtermsof N that are rearranged into Ay, by the —., -
normalization process. Depending on the form of the redex Ay, this collection (we will denoteit by A}, even
thoughitisnot necessarily asingleterm) may takeseveral forms. If A, isafuse-, bubble-assign-, assign-result-,
unit-, or bubble-new-redex, the top-level syntactic constructor of Ay ise: thiscase allows A}, to consist of sep-
arate subterms. If A, isaf- or &-redex Ay will consist of asinglesubterm. If A, isapure-eager- or pure-lazy-
redex then A, will likewise consist of a single subterm.

We decompose the proof into three cases depending on therelative positionsof L' and Aj,. Inthefirst case,
L' and A}, are digoint. In this case, the positions of the subterms will be enough to establish that |. [M] has
an evaluation redex and hence a head redex. In the second case, all the fragments of A}, liewithinL'. Inthis
case al'so wewill be ableto reason from the position of the subtermsrather than their composition. Inthethird
case, however, inwhich L' overlaps AL, we will have to conduct a case analysis on the form of the redex Ay,.

Before we begin the positional analysis, it is important to elaborate on the possible configurations of Af,.
Consider the maxima command sequence immediately containing Ay, that is, the largest chain of v- and -
congtructs such that A, either overlapspart of thechain or isan element inthechain. Since A, isahead redex,
there are no evaluation redexes to the left of Ay, in thismaximal chain, afact that isreflected in the collection
of subterms A}, because —. -reduction preserves the order of subterms. In moreformal terms, J.. [N] must have
theform E1[S#[E, [An]]], where thereis no evaluation redex in S#(], and the (lazy) store-context S%[] isthe
longest such sequence immediately surrounding Ay,.

Case1: L' and A are digoint. In this case, no part of the result of reducing A is assembled into Ay, yet A,
ishead redex in |, [N]. We argue that the antecedent of A, must then exist and be the head redex in
J»[M] (and thismust be, by Definition 3.7.4, the head redex of [M] - ).

The existence of the antecedent of A} as aredex within . [M] followsfrom two observations. First,
since L’ isdigoint from A}, A isan unatered copy of a subterm of |.. [M] disjoint from A'. Second,
since J. [M] isin —. -normal form, so are d| itssubterms, including Af,. Hence A}, isreally the same
astheredex Ay—itisnot possiblein thiscase for Af, to be aset of fragments to be assembled into A,
by —..

We next notethat L' cannot be in an evaluation context to the left of Af, because thiswould make &'
ahead redex, whereas it is assumed in the statement of the lemmato be internal. Hence the context
inwhich A" occurs must be either anon-eval uation context or an eval uation context to the right of the
antecedent of Al If thelatter case applies, the mere existence of an evaluation redex establishesthe
existence of ahead redex (Lemma 3.7.3). We are thus|eft to consider the casesin which A’ occupies
a non-eval uation context.
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Case 2:

Case 3:

Since A" must bedisjoint from the antecedent of Af, (whichisAy, aswe showed just above), theremust
be some multiple-subterm syntax constructor that forms the least common ancestor of the two terms.
Furthermore, since A, lieswithin an evaluation context in the whole term (since the only change oc-
curswithinA), thiscommon ancestor must itself bein an eval uation context and A, must beinanested
evaluation context starting at the common ancestor.

The following list enumerates al the ways in which this situation can arise.

(1) Er[EoAn]eCIAT]],

(2 E[Eo[tn]:=CAT),

(3) E1[Ex[An]>x-ClA]],

(4) E1[C[A]>Xx Ex[An]], where C[] isnot an evaluation context,

(5) E1[pureS™[t Eo[An]]], where A C S9[]. (This case appliesto A[Bdleag)),

(6) Ei[pureS¥[t Ex[An]]], where &' C S¥{]. (This case appliesto \[Bd!laz]).

In each of these cases, A, isan evaluation redex of |. [M]; hence .. [M] must have a head redex.

N CL.

Since A, may not be a single subterm, the assertion characterizing this case should be understood to
mean that all the components of A}, are subtermsof L', which inturnimpliesthat all the components
of A, arise from the reduction of A'. Moreformally, if A" appearsin agenera term context G [], i.e.
LM] =G[A] thenN = G[L'] and N —. G [C,[An]] for some generd term context G[]. Since
A isknown to be a head redex, the enclosing context G [C,[]] must be an evaluation context. Since
evaluation contexts are inductively defined in such away that any prefix of an evaluation context is

aso an evaluation context, the context C,[] must be an eva uation context. We have now shown M
to have at least one evauation redex, so by Lemma 3.7.3 it must have a head redex.

L'cay.

In case A\, consists of more than oneterm, weinterpret L' C A}, to mean that thereissometerm Q in
the set composing A, for which L' C Q. For an example of this possibility, suppose that N has the
form ((1Ny) >x-N5) >y N, where L’ isthe subterm (1 N ) X N5. The —, -normal form .. [N'] then
hastheform (1 Ny ) >X -} [N; >y N5 ], where A, consists of the entireterm J.. [N']. The subterm L' is

not a subterm of this normal form. In the subcases that follow, we must account for this possibility
that L' may be fragmented into more than one different subterm of Ay.

In thiscase thereduction must have thegeneral form M’ = E[M] 4 E[A},] for some eval uation context
E[] and subterm M with A’ C M. We now carry out a case analysis according to the form of the redex

An C 1. [N'], and show that for each form, the antecedent M C M’ of A\, has an evaluation redex (and
hence, by Lemma 3.7.3, ahead redex).

For each case, welist the possibleformsof M andthe corresponding eval uation redex whose existence
we must establish. The notation C; [A] refers to the redex A in a non-empty context.

(@ B A= (AX.Np) e N,.
Since —, cannot shuffle terms whose syntactic constructor is e, the antecedent A}, of A, within
N’ has the same form, with some —. -conversion possiblewithinthe subterms. Soif welet A} =
(Ax.Nj) e No’, and if we consider &l the ways that this subterm can be produced from an an-
tecedent M, we obtain the followi ng table which displays the evaluation redex whose existence
isimplied:

M: eval. redex:
Ne N
AX.CIY])eN, M
(AX.NJ)eClA'] M



(b)

(©)

(d)
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53

o A= feV
This case is subject to the same reasoning concerning the form of A, as the case of B and gives
us the following table for establishing the existence of an evaluation redex in M:

M: eval. redex:
NeV N

fOAI AI
f.(C[AI]...) N

fo(Ce---eCA]e-)
fe (AX.C[A'])
unit: Ap = TNy >X-Np
For thisand other forms of redex whose root syntactic constructor isr we need to consider care-
fully the effect of the—. -reduction leading from A} to Ay,. If we supposethat Ay istheresult of a
assoc- or extend-reduction involvingthe occurrence of i that formstheroot of A, we see that the
(possibly multiple) terms making up Af, must include exactly one of theform 1+N; >x N5, where
N, might be a shorter command sequence (in terms of number of occurrences of > on its spine)
than N;. The other termsin A}, are those tacked onto N, by assoc- or extend-reductions. We call
the former kind essential and the latter trivial.
If L' is asubterm of the essential element of A, we can deduce the following table giving the
required evaluation redexes:

5

M: eval. redex:
N >x N, N
A ex N, M
TN X Cl] M

If, on the other hand, L’ isasubterm of atrivial eement of Af, then the entire antecedent Misan
evauation redex.

fuse: A =Vvi=Ng; V2o XNy
The considerations and terminology given under the case for unit apply here aswell. If L' isa
subterm of the essentia e ement of AL, then we construct the following table of cases:

~

M: eval. redex:

A Ve XN, N

v:=CA']; V2o XN, M

N =N veexN, A

vi=N; A o

vi=N; A exeN, A

vi=N; AP XN, A

v:i=N;; V2o x-C[A'] M

If, on the other hand, L’ isasubterm of atrivial element of A, then M itself must be an evaluation
redex.

bubble-assign: An = v:i=Ng; w?eX Ny
We invoke the same reasoning and terminology as in the previous two cases. If L' isa subterm
of an essential eement of A7, then we construct the table

: eval. redex:
; W2 X-Nj N
v:=CA']; w?sxNj M
N =N w2ex N, A
vi=N; & N
vi=N; A exN, N
vi=N; AP XN, A
v:=N; Axx-C[A'] M

‘Z>

>
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(f)

(9)

(h)

If, on the other hand, L' is a subterm of atrivial dement of AL, then M itsalf is the evaluation
redex we seek.

assign-result: Ay =v:=Ni XNy, xefvl\,

The usual reasoning for redexes formed by > appliesoncemore. If L' isasubterm of an essential
element of A}, we can deduce the informationin the following table.

~

M: eval. redex:
Nox-Np N
N =N e>xN, A
v:i=CA > xNj M
v:i=N; >x-C[A'] M

If, on the other hand, L' is a subterm of atrivial dement of AL, then M itsalf is the evaluation
redex we seek.

bubble-new: A = ww?>X-N;

The usual reasoning for redexes formed by & appliesoncemore. If L' isasubterm of an essential
element of A}, we can deduce theinformationin the following table.

~

M: eval. redex:
w.A N
WA > Xx-Ny N
WA ?25xN; A
ww?exCA] M

If, on theother hand, L' isasubterm of atrivial e ement of AL, then the entire antecedent M isthe
evauation redex we seek.

pure-eager: A = pureS9[t V]

This case appliesin the calculus A[3d! eag].

Since theroot syntactic constructor, pure, of thisredex isnot subject to —. -reductions, A, must
also be apure construct, perhaps with some associative rearrangement of the store-context. We

subdividethis case according the the position of L’ as a subterm of A},. We denote the antecedent
of VinAj by V.

(1) L' digointfromV'.
Inthiscase, M = pureS{9[Cy [A'] > x-S79[+ V]] for some store contexts S;™°[] and S[] and
genera term context G []. Sincethe whole body of the pure expression must associate into
a pure-redex, the subterm G, [L'] must actually (associate to) a fragment of an eager store-
context, that is, it must consist of a sequence of v and assignment commands. We now sub-
divide the possiblelocationsinto cases yet again:

(8) L' encompasses one or more command.
In this case the redex A’ C .. [M] that reduces to L occupies the prefix of a command
sequence. Thisisan evaluation context.
(b) L' lies completely within a command.
The following table gives al the ways this can happen, aong with the evaluation redex
whose existence is required. We note that it is not possible in this case for further —- -
reduction of the main command sequence to be required, since A’ occursin aterm that
isalready in —, -normal form.
M: eval. redex:
pureSP =N, ox-SEHV] A
pureSON; :=A ox-SOMHV] M
@ Lcv.
Recdlling that pureS™@9[1 []] is an evaluation context, we construct the following table of
possibilities:
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~

M: eval. redex:
pureS@9[t A') iy
pureS=9[f (e --- o CA]e--)] M
pureSR9[ (Ax.C[A'])] M

(3) V cL.

Inthiscase, thereduction of A’ produces atail of the main command sequence of A}, contain-
ing the result-producing occurrence of 4. Theantecedent M thustakestheform pureS29[a’],
inwhich A’ occursin an evaluation context.

This concludes the proof in the case of a pure-eager-redex.

(i) pure-lazy: A, = pureS¥[tV]

The case occurs in dealing with the calculus A[3d!laz]. We can reason here as we did for the

case of an pure-eager-redex, with the exception that the case in which L’ is digoint from V' is

easier. Theform of alazy store-context isnot as constrained as that of an eager store-context, so

whenever L' isdigoint from V' the entire antecedent M of A, is an eval uation redex because the
rule pure-lazy isindifferent to substructure in the prefix of astore-context.

Gathering the results for all the relative positionsof L' and A}, we see that we have now compl eted the proof
of Lemma 3.7.6. 1

Lemma3.7.7 (Heads are preserved) Let A, beahead redexand A beaninternal redexin [M] - . If [M] 4
[N] - , then the residual of A, in J. [N] consists of a single redex that is head redexin [N] . .

14

Proof: Sinceahead redex cannot be a subterm of another redex, we have only two cases to consider concern-
ing the relative positions of A, and A;.
Casel A and Ay aredigoint.
Thewaysinwhichthiscase can arise havea ready been enumerated inthecase analysisfor Lemma3.7.6,
Case (1):
(1) Ei[Ex[An] e ClA ]
(2) E1[E2[An]:=ClA]],
() Er[E2[An]ex-ClA]],
(4) E1[ClAi]>x-Ez[An]], whereC[] isnot an evaluation context, or
(5) Ei[pureS29[t Ex[An]]], where Ay € S™I[]. (This case appliesto A[o! eag)).
(6) E1[pureS¥[t Ex[An]]], where A, C S¥[]. (This case appliesto A[B8!laz]).
In each of these cases the reduction of A; leaves A, as an evaluation redex; it is leftmost because it
was leftmost already in | [M].
Case2 A C Ay

Inthis case the residud of Ay (cal it Al) isaredex, as can be verified by inspecting the interactions
between reductions analyzed in the proof of Proposition 3.4.1 and Lemma 3.5.5. Furthermore, since
l- M] = E[An] — E[A},] = N for someeval uation context E[], A isanevaluationredex of N. It remains
toshow that it isin fact ahead redex, that is, that it isthe leftmost eval uation redex.

Assume to the contrary that A}, is not the leftmost evaluation redex. Then A}, is either properly con-
tained in another evaluation redex A, or elsethereis another evaluation redex A digoint from, and to
theleft of, Af.

In thefirst case there are evaluation contexts E; [] and E,[] with Ey[] # [] such that

N = Ei1[A] = Ei[E2[AL]]
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Since A\ C Ay, thereis anonempty general term context ] such that
- M] = E1[E2[An]] = B [E2[CIA]]),
and thus (carrying out the reduction)
N = &[> [CIA]]]

where/\, istheresidual of A;. Now thequestionis, how did A arise? Thereduction of A; asasubterm of
Ay, could not have created aredex outsideof Ay, asan inspection of the set of reduction ruleswill show.
Therefore, the antecedent of A existed as an evaluation redex in J.. [M], contradicting the assumption
that its proper subterm Ay, was the head redex.

Inthe second case, we can find eval uation contexts E; [], Eo[], E3[] suchthat N isoneof thefollowing:
(1) Ei[E2[A] o E3[AL]]

(2) E1[EslAG]:=Ex[A]]

(3) E1jvi= E[A] »x E3[Ap]].

Hence, J.. [M] isone of the following:

(1) Ea[E2[A] @ E3[An]]
(2) E1[E3[n]:=E2[A]]
(3) Eilv:= E2[A] > x E3[An]].

L~

In each case, A isan evauation redex to theleft of Ay, contradicting the assumption that Ay, isthe head
redex.

Lemma3.7.8 (Internalsare preserved) For anytermM in —. -normal formand internal redex & C M, for
any internal reduction M —; N, all residuals of A; areinternal redexes of J.. [N].

Proof: Assume, to the contrary, that thereisaresidual A of A; that isahead redex in N. By Lemma 3.7.6, M
has a head redex A,. By Lemma 3.7.7, A istheresidua of An. This contradicts the assumption that A was a
residual of theinternal redex A;. i

We have now established the properties of our calculi needed to prove the standardization theorem by the
techniques (attributed to Mitschke) of [Barendregt, 1984], Section 11.4. Themain thrust of the citedwork isto
provetheresult we have stated in Lemma 3.7.5. Knowingthat head and interna reductions can beinterchange
letsussingleout the standard reducti on sequences as thosethat proceed inan orderly fashion fromleft toright.

Definition 3.7.9 (Standard reduction sequence) A seguence of reductionsMoﬁi Mlg e A”—Sl Mpisastan-
dard reduction sequence if, for all i < j, A; isnot a residual of a redex to the left of A;.

Theorem 3.7.10 (Standardization) If M —* N, then there exists a standard reduction sequence fromM to
N.

Thefollowing related result onthe computati on of answer termsisused inthe proof of Theorem 5.1.7. The
theorem says that answer terms are built in atop-down order, outermost constructorsfirst, then components.

Definition 3.7.11 (Top-down reduction to an answer) A reduction sequence ending in an answer A istop-
downif either it consistsentirely of head reductions, or consistsof a head reduction sequence endinginaterm
cC"eMje--- e My k < n, followed by a top-down reduction sequence for My, and so on through M.
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In Definition 3.7.11 the head-ness of the subsequences isinterpreted with respect to the subtermin ques-
tion.

Theorem 3.7.12 (Standard reduction to an answer) If M —* A, where A is an answer, then the standard
reduction sequence from M to A istop-down.

Proof: The proof is by induction on the struction of the answer term A. The base casesare A= and A= f,
both of which are termswith no internal structure. In these cases thelast reduction of the sequence must have
produced the answer term by reducing the entireterm. Thisis ahead reduction, so thereis no segment of the
reduction sequence using internal reductions. The reduction sequence is thus top-down.

Now assumethat A=c"eAje--- ¢ A ,0 < k< n, Agan consider thelast reduction that produced A: this
reduction must have either involved the entireterm asredex, producing all of A, or elseit resulted in one of the
subterms A;. In the former case thelast reduction is a head reduction, and hence al its predecessors are al so;
thus the reduction sequence is top-down. In the latter case the induction hypothesis applies to show that the
reduction sequence producing A; istop-down. Furthermore, sincethereductionisstandard, thesubtermstothe
left of Ay must have been produced earlier in the reduction sequence, and the subtermsto the right of Ay must
aready be answers. We can thus apply theinduction hypothesistothetermc"e Aj e --- ¢ Ai_; . Puttingal the
top-down reduction sequences together in the order we have deduced yields a top-down reduction sequence
forA.1

3.8 Relating propertiesof —, to propertiesof —

Wehave now proved the Church-Rosser theorem and standardi zati on theorem for —, on=-equivalence classes.
In thissection wetrand ate these resultsback into —, whichisthe reduction relation we actually intend to use.

Theorem 3.8.1 (Church-Rosser) Thereduction relation — on A[Bd!eag] and A[3d!laz] is Church-Rosser.

Proof: Suppose we are given the top half of a Church-Rosser diagram under reduction —:

M
/ \
My Mo

Each of the given reduction sequences consists of some interleaving of —. -reductions and — -reductionson
terms. Passing to =-equivalence classes, the —. -steps collapse (since they stay within the same equivaence
class), and the — -steps on terms become — -steps on equival ence classes:

(3.3)
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Since — is Church-Rosser on equivalence classes (Theorem 3.6.1), we can complete the diamond to obtain
aterm N such that the diagram

My]e Mz]:- (34)

%..!. . . .%‘!
S
N

commutes. We would now like to use this diagram for —; on equivalence classes to help us complete the
diagram 3.3. Thefirst step in doing thisis to note that each of the terms M1 and M can be normalized with
respect to —. while staying within the same =-equivalence class, giving us (so far), the diagram

M

M
/ \
1 M
—>>l i
Jo [Mq] 1o [M2]

The next step isto use theinformation given us by diagram 3.4. This diagram assures us that, somewhere in
each of the equivalence classes [M1]. and [My]. thereis aterm that reduces via — on termsto some term
in the common equivaence class N'. However, if such reductions exist, then by Corollary 3.4.2 we can be
assured that they exist starting at the normal forms |.. [M1] and J.. [M2]. Furthermore, since these reductions
land in the same equivaence class N, the termsin which the end must be convertiblevia—s. . Thuswe have

5 -

—

M
— —

M1 M2
%i b
Jo[M4] Jo [M2]
— l l—>l

v

M5
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But now, since —. is Church-Rosser (Theorem 3.3.3), the convertibleterms M and M5, must have acommon
reduct M'. Thisfact allows usto establish the diagram

M
— —
Mq My >
—> i—%
Jo[M1] Jo[M2]
— l l—>l
M} = M)
—> —
MI

which isa complete diamond for —*. We have thus shown that — is Church-Rosser. i

We now turn to the question of deriving a standardization result for A[Bd!eag] and A[Bd!laz] from the re-
sultswe havefor the reduction — on =-equivaenceclasses. Welift sequences of — -reductionsto sequences
of —-reductions by reducing to —.. -normal form before each — -step. Wetake a standard reduction sequence
under — to be one thusderived from astandard reduction sequence under — . The question now iswhether it
has the same nice characterization in terms of evaluation contexts as the original reduction sequence. Wenote
that the reduction order so defined is certainly deterministic: Proposition 3.3.8 and Theorem 3.7.10 combine
to show this. Since head redexes are defined in terms of —. -normal forms, the derived —-reduction selects
the same redexes as the origina — -reduction sequence. Furthermore, by the remark in the proof of Propo-
sition 3.3.8, we can choose the same definition of evaluation contexts to define the reduction order for the
— -steps as we do in defining the standard order for — -reductions. Collecting al these remarks, we have
established that the evauation contexts defined for Definition 3.7.1 yield a standard order of evaluation for
=

3.9 Chapter summary

This chapter has established the credentials of A[3d!eag] and A[Bd!laz] as a foundation for programming-
language design on the same basis as the pure lambda-ca culus. We have introduced the derived reduction
relation of reduction modul o association and shown it to be Church-Rosser and to possess a standard evalua
tionorder, and we have used these resultsto establish the same propertiesof theoriginal reductionrelations. In
theremainder of the dissertation wewill thushave no need to refer to thefactored reduction relation employed
as a proof techniquein this chapter.
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4

Operational equivalence

The reduction semantics studied in Chapter 3 gives us a basic notion of computation for programs in these
caculi: aprogram M evaluatesto an answer Aif and only if theterms M and A are convertibleinthe calculus.
However, when reasoning about program transformations, we usually want to know whether two program
fragments are interchangeable based on whether they induce the same behavior in al programs containing
them—thisis one of the main motivationsfor conducting language semantics in the first place. The appro-
priate notion of equivalenceisoperational equivalence. Sinceit is possible for two program fragments to be
equivalent in this sense without being convertible according to the reduction semantics, operationa equiva-
lence requires separate study. In this chapter we expand our treatment to consider the question of operational
equivalence for the calculi of concern. We give the standard definition of operational equivaence, and we
prove a suite of basic operational equivalences for A[Bo!eag] and A[Bd!laz).

4.1 De€finitionsand basicresults

The definition of operational equivalence formalizes the notion of two terms being indistinguishable under
any test.

Definition 4.1.1 Let A, be some extension of the A-cal culus having the term language /.. Two terms N and
M areoperationaly equivaentin A, , written A, | N = M, if for all contextsC in A, such that JM] and C|N]
are closed, and for all answers A,

A FOM=A & A FCON=A

Theremainder of thisshort section consists of aseries of e ementary results about operational equiva ence
that are used elsewhere in the dissertation.

Lemma4.1.2 A, F M=NimpliesA, EM=N.

Proof: Assume A, F M = N, and suppose A, F CIM] = A. Since convertibility is closed under term-
formation, \, - M = NimpliesA, + CM] = C[N], for any context C. The symmetry and transitivity of
convertibility thenimply that A, F C[N] = A. The symmetric argument provesthe converseimplication, thus
establishingA. - CM] = A< A, = CN] = A, whichisthe definitionof A, E M= N. I

Lemma4.1.3 For any context C, A, =M = NimpliesA, = CM] = C[N].

Proof: Assumethat A, = M = N, and suppose that A, F C[C[M]] = A, for some context C[] such that
CI[C[M]] and C[C[N]] are closed. Then the assumed operational equivalenceimpliesthat A, + C[C[N]] = A,
and similar reasoning establishesthe reverse implication. ThusA, = CM] = CN].

Lemma4.1.4 For anyvariablex, A\, E M= N & A, E XM = AxN.

Proof: Theleft-to-right direction isaspecia case of 4.1.3.

To prove the converse, supposethat A, = Ax.M = AN, and supposethat A, + CM] = A, where C|M]
isclosed. If xe fvM, then A, = AxXM)x =M, and x€ bv(C[]). Let C[] =C[[]x]. Then A, F CAxM] =
CM] = A Since A, = MM = AN itfollowsthat A, - C[Ax.N] = A, and thereforealso A, + CN] = A.
Since Cwas arbitrary, A, = M = N. If x¢ fv; M, choose C[] = C[[]c] for any constant c°. &

Lemma4.1.5 For any answer term A and arbitrarytermM, A, E M= Aifandonlyif A, - M =A.

Proof: The"if” directionisaspecia case of Lemma4.1.2.

Toestablishthe“only if” implication, supposethat A, = M = A. Then, by Definition4.1.1, for al contexts
C[] and answers A, A, + C/M] = A’ ifandonly if A, F C[A] = A’. Inthe particular case where C[] =[] and
A=A thisgivesusA, - M= Aifandonlyif A, - A= A. The second component of thelogical equivalence
is certainly true, so the first component, which is our desired result, is established.
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4.2 Some operational equivalencesin A[3d!eag| and A[3d!laz]

In this section we prove a small collection of operational equivalences that hold in the calculi A[38!eag] and
A[Bd!laz]. These equivalences are selected to correspond to frequently-used informal properties of program-
ming with store-variables and assignment.

Proposition 4.2.1 The following are operational equivalences in A[36!eag] and A[Bd!laz]:

(1) V2 X W2y M = w?2ey v?2e XM

2) vi=N;w:=N;M = w=N;vi=N; M, (V#w)

3 ww:=N;M = w:=N;wM, (v£wyV ¢ fsyN)
(4) wwM = vwvv.M

B) vi=N;vi=N;M = vi=N; M

(6) Pexftx = P

Proposition 4.2.2 Thefollowingisan operational equivalenceinthecalculusA[Bd!eag] if thereisno assign-
ment in S™9[] to any store-variablev € fvP.

(1) S¥P] = B ((vS™P =1fvP)

Wewill provethese operational equivalancesimmediately below, but first we describe what they mean in
terms of informal programming concepts.

Equivaence (1) says that store-variable lookups commute. Equivalences (2), (3) and (4) say that assign-
ments and store-variable declarations commute with themselves and with each other. Equivaence (5) says
that if avariableiswritten twice in arow, the second assigned value is the one that counts.

Equivaence (6) istheright-identity law for monads. Although our reduction semantics does not axioma-
tize thislaw, we recover it in the theory of operationa equivalence.

Equivalence (7) represents“garbage collection”: it saysthat astore-context S*9[] of an expression S9[P]
can bedroppedif novariablewrittenorin S™9[] isusedin P. Notethat, usingthe“bubble’ conversionlawsand
the commutative laws (2), (3) and (4), garbage can aways be moved to an eager store-prefix. Thisoperational
equivaenceis stated only for A[Bo! eag] because thereisno way of defining the set of store-variablesassigned
inalazy store-context S%[]—not al assignment commandsin such astore-context need be apparent statically.

We should note that none of these proposed operationa equivalences is provable by conversion. If we
consider the meta-variables as ordinary variables thereis not asingle redex on either side of any of the equiv-
alences, so thetwo sides are actually distinct normal forms and hence not interconvertible.

Proof technique

The definition of operational equival ence demands that we prove statements that are quantified over al con-
textsin each cd culus; the statements themsel ves are quantified over al answer-producing reductions. Itisnot
immediately clear how to proceed in the face of these complex requirements, but we have available to us a
proof technique developed by Odersky [Odersky, 19934] to reduce this burden of proof. This technique re-
quiresusonly to prove certain properties of the interaction between the proposed operationa equivalence and
the reduction rules of the calculus. We give thistechnique in outline before we proceed to use it in the proofs
bel ow.

Oderksy’ stechniquerequiresthat, for each proof, we construct a coll ection of symmetric rewriterulesthat
define arelation, similarity, intended to characterize the operational equivalence to be proved. In our present
proposition, this collection will always consist of a single rule, which will be the operational equivalence as
stated. Wemust then show that, inall casesinwhich thesimilarity ruleshaveacritical overlap (see Section 3.2)
with the reduction rules of the calculus, there exists a parallel application of (al ready-established) operational
equivalences to the similar term that yields aterm similar to the result of the reduction.

The main proof requirements for each operational equivalence are explained in relation to the following
diagram:
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~1 ~1
R oo WINPIN R

In this diagram ~1 isthe parallel similarity derived from ~. In our proofsit will suffice to think of ~
as being the union of the relation ~ with syntactic identity =. The h [abeling the arrow means that the corre-
sponding reduction is a head reduction.

For each proof below, wewill give concrete meta-terms and reductionsto instantiate this diagram.

Applying the proof technique requires in addition that we establish certain highly technica conditions.
First, we must verify that the eval uation contexts of A[3d!eag] and A[38!1az] are downward closed, that is, that
E=C -G impliesthat G isitself an evduation context. Thisisobviousfrom inspection of the definition of
evaluation contextsin Figures 3.2, 3.3, 3.4, and 3.5. Second, we must establish, for each similarity relation
we introduce, that the relation preserves eval uation contexts and is answer -preserving.

Preservation of eval uation contexts means that substitutinginstances of asimilarity rulefor ametavariable
in an non-evaluation context cannot transform that context into an evaluation context. Put another way, the
requirement is that collapsing similarity-ruleinstances to a single metavariable cannot destroy an evaluation
context. It iseasy to see that the definitions of the evaulation contexts for A[Bd!leag] and A[Bd!laz] given in
Figures3.2, 3.3, 3.4, and 3.5 prevent thispossibility. The point to noteisthat substructureof aruledefining E[|
isawaysametavariableor therecursivereference to E[] . Thusany collpase of asimilarity-ruleinstance must
occur either within a metavariable of an E[| -rule, because the context hole cannot occur within a similarity
ruleinstance in the technical formulation of [Odersky, 19934].

Ananswer-preservingrelationsatisfiesM ~ A= M —* A; thisiseasily seen to betruefor al our proposed
similarity relations(most often vacuously, since our similarity patterns do not match answer terms), sowewill
omit further mention of thisissue.

Proof: We now proceed to prove each of the proposed operationa equivaences. Although the bottom edge
of the diagram can be any operational equivalence, in many cases the operationa equivaenceiseasily estab-
lished by exhibiting a conversion. We only remark on the exceptions to this observation.

For each of the operational equivalencesto be proved, we supply the needed similarity relationin theform
of aset of rewrite rules and then give the data needed to instanti ate the diagram above. Welabel the proofs of
the parts of Propositions4.2.1 and 4.2.2 by number.

(1) We adopt the similarity relationimplied by S = {V?ox-W?>y-M ~ W?2ey V26 X-M }.

Therulesin S do not overlap with any of the productionsdefining eva uation contextsin Figures 3.2, 3.3,
and 3.4. Hence, ~ preserves eva uation contexts.

We now enumerate the various ways in which ~ can intefere with —; for each case, we show how to in-
stantiatethe diagram so asto provethat the compatibl e equival ence closure of ~ isan operational equival ence.
In thisinstance the cases are distinguished by which store-variables are identical in the various terms.
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Case1.1:
R = u:=N; V?eXxw?ey-M, (UZV,UZWVZEW)
R’ = u:=N; w?eyv?ox-M
24 = v2exu:=N; w?sy-M
R = V2o X W?sy-u:=N; M
R = w?sy v?eX-u:=N; M
R —pubbleassgn R
R —pubbleassign R
R’ —bubble-assign w?ey-u:=N; v?eox-M
— i R
bubble-assign ™
Case1.2:
R = w:=N; V2o XW?ey-M, (UZVVZW)
R/ = w:=N; W?sy v?>X-M
R = V2o X-Wi= N; w?ey-M
R=K = v2eX-wW:=N; [N/y| M
R —pubbleassign R
R —fuse Ry
R’ —fuse w:=N; [N/y] (v?&=x-M)
= w:=N; v?ox[N/y| M
—bubble-assign R
Case 1.3
R = V:=N; V?eXxwW?ey-M,  (VEW)
R/ = v:i=N; W2py v?eX-M
R = v:i=N; [N/X] (W?>y M)
= v:=N; w?ey [N/X| M
R=R = R
R —fuse R
R’ %bubb|e_a$ign w?ryv:i=N; v?>X-M
—fuse Ry
Case1.4:
R = u:=N; V?eXVv?ey-M, (UZV)
24 = v?2ex-Uu:=N; v?oy-M
R’ = u:=N; v?>yVv?e-X-M
R = V2o XV2eyui=N; M
R = V2o y V2 X-U:=N; M
R —pubbleassign R
R —pubbleassign R
R’ %bubb|e_a$ign v?2ey-ui=N; v?>X-M
—bubble-assign R
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Case 1.5:

R = V:=N; v?e>xVv?ry-M

R =  V:=N;[N/Xv?>yM
= v:=N; vy [N/X] M

R’ = R

R = R

R = R

R —fe R

R = R

R' —fuse Ri

For the remaining operationa equiva ences, we give only the basi ¢ data needed to complete the diagram.

(QS={vi=N;w:=N; M~w:=N; vi=N; M}, (v Z w).
Case2.1:

R = vi=N; wi=N; w?ex-M',  (vZw)
R = vi=N; w:=N; [N /x| M
R = R
R/ = w:=N; v:=N; w?ex-M'
R = w:=N;v:=N; [N /x] M’
R ~fuse R
R’ —hubble-assign w:=N;w?>xv:=N; M, (since x¢ fvN)
—fuse w:=N; [N'/X] (vi=N; M)
= R/
1
Case 2.2
R = vi=N; wi=N; v2ex-M, (VZw)
R = vi=N; vZexw:=N; M, (xgfvN)
R/ = w:=N;Vv:=N; v?>-xM
R = vi=N;w:=N; [N/ M
R = w:=N;Vv:=N; [N/ M
R —pupbleassign R
R —fuse v:i=N; [N/X] (w:=N; M)
= Ry, (sincex ¢ fvN)
R —fuse R
Case 2.3:
R = vi=N; w:=N; u?exM, (UZwuZv)
24 = v:i=N; u?exw:=N; M
R/ = w:=N;v:=N; u?e-x-M
R = u?exv:=N;w:=N; M
R = u?exw:=N;v:i=N; M
R —pubbleassgn R
R —pubbleassign R
R’ —*pubble-assign w:=N;u?exv:=N; M
—bubble-assign R

(B S={ww:=N; M ~w:=N; wM|vZwyv ¢ fvN}
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Case 3.1:
R = w:=N; w.u?e-x-M, (UZwuZv)
24 = w:=N; u?>xvw.M
R/ = ww:=N; u?ex-M
R = u?e>xXw:=N; w.M
R = u?eXvww:=N; M

R —pubblenew R
—bubble-assign R4

R' pubbleassign WU?xw:i=N; M
—pubblenew R

The last lines of the preceding derivation are thefirst case in which we establish the operational equivalence
on the bottom edge of the diagram viaagenera conversion rather than aleft-to-right sequence of reductions.

Case3.2:
R = w:=N; ww?:x-M, (UZV)
R = w:=N; w?>X-wW.M
R/ = ww:=N; w?2x-M
R = w:=N; [N/ (w.M)
= w:=N; w.[N/X M
R = ww:=N; [N/x] M
R —pubblenew R
~fuse Ry
! !
R —fuse 1
Case3.3:
R = ww:=N; u?eXxM, (UZWUZV)
24 = w.u?exw:=N; M
R/ = w:=N; w.u?ex-M
R = u?eXvww:=N; M
R = u?e>xXw:=N; w.M
R —pubbleassign R
' “’bubble-new Rl' '
R’ —pubble-new WI.:N, u?e-X-vw.M
—pubble-assign R
Case 3.4
R = WwWw:= N; w?>x-M
R = ww:=N; [N/x M
R/ = w:=N; ww?>x-M
R = R
R = w:=N; W.[N/X M
R ~fuse R
R’ —pubblenay W:=N;w?>xvv.M
—fuse w:=N; [N/X] (Vv.M)
= =
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Case 3.5:
R = (ww:=N; M1)>X-M>
24 = ww:=N; M;>Xx My
R’ = (w:=N; wMz)ex-My
R =
R = w:=N; w.M; XMy

R’ —assoc Rll
4)S = {wvywM ~w.vvM}
Some of thecritical pairswe encounter in the course of proving this operational equival ence require more
refined reasoning than we have yet encountered in these proofs.

Case 4.1
(WywM)ex:-N

W.(VW.M) >Xx-N
(vWw.ww.M)ex:-N
WIW.(M> X-N)
wWWV.(M> X-N)

R

A
HE1 10

R —etend R
R/ —extend W(WM)>x:N
—extend R

Case 4.2
WIWU?eXx-M - (UZV,UuZw)
w.u?eX-vw.M
VW.WV.u?eX-M
u?e>X-vwWwyvwM
u?eX-vw.ww.M

3, 0 A
HE1 10

R —pubblenew R
R —pubblenew R
R’ —pubblenay VWU?>X-WWM
—bubblenew R
Case4.3:
WIWNV?EX-M  (VZE W)
W.V?5X-VW.M
VWV .V?1>X-M
24
R

A
HE1 1

R —pubblenew R
= R (by the following argument)

Informally, both R and R are stuck terms. the only way a program containing either one as a subterm
can reduce to an answer is to throw the term away?, since no rule (including the &-rule), can examine the
substructure of terms constructed with v (or any other term except a value or a fully-applied constructor).
Thus one would expect that putting both termsin the same context would yield a computation that either gets
stuck or yieldsthe same result regardless of the termsin question.

Formally, we apply the critical-pair method once again. We define an auxiliary similarity relation §' =

1Actually, there could be reductionsinside M, but there is still no way for either term as awhole to reduce to an answer.
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{W¥?exP ~ w.wwv?eX-Plv # w}. Thisrelation interferes with no reduction rules whatsoever, and so it

induces an operational equivalence, asrequired. Thisrather vacuous observationistheformal justificationfor
the informal expectation expressed just above.

B)S={vi=N;v:i=N;M~v:=N; M}

Caseb.1:
R = v:i=N:Vv?exM
R = vi=N;[N/XM
R’ = v:i=N:; v:i=N: v?e-x-M
RR = R
Rk =  vi=N;vi=N;[N/XM
R —fuse R
R' —fe R
Caseb.2:
R = vi=N: w?sx-M
24 = w?exvi=N; M
R’ = v:i=N; v:i=N; w?ex-M
R = R
Ry = w?eXVi=N; v:i=N: M
R —pubbleassign R
R’ —bubble-assign v:i=N; w?exv:=N:M
—pubble-assign R
Caseb.3:
R = v:i=N:; v:i=N: v?e-x-M
R = vi=Nvi=N;[N/XM
R’ = v:i=N:Vv?exM
RR = R
Rik = vi=N;[N/XM
R R

—fuse
R' —Spee R
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Caseb5.4:
R = vi=N; vi=N; u?exM  (UZVv)
24 = vi=N;u?exv:=N; M
R/ = v:=N;u?ex-M
R = u?exv:i=N;vi=N; M
R = u?exv:i=N; M

R —pubbleassign R
R —pubbleassgn R
! !
R' —pubbleassign R
(6) For thisequivalence, we adopt the similarity relation defined by S = {P >x 1 x ~ P}, where the meta-
variable P ranges over procedures only. This similarity relation only interferes with the rule (assoc).

R = Pex1X)>y-Q
R = Pox-(t x>y Q)
R’ = Poy-Q

Ry = Pex{x/y] Q
R = Ry

R —assoc R
R —unit R
R = 24

The last equivalence mentioned isjust the a-renaming of R,.
This concludes the proof of Proposition4.2.1. i

Proof: (7)S = {S™[P] ~ P| S]] an eager store-context, fv 9P| = fv P, and no free store-variable of P
isassigned in S9[]}

This similarity relation can interfere both with the purification rules and with the assignment rules. All the
critical pairs having to do with the purification laws yield essentially the same diagram verification task, so
we giveonly asingleexample:

R = pure(S[t (Ax.M)])
R = MX.pureS[t M]
R = pure(t Ax.M))

R = R

R = Ax.pure(t M)

R —pureeager R
R' —pureeager R{

The uses of ~ in the converse direction are equally simpleto verify.

The verification of the proof conditionsin the cases of interference with assignment rules requires that we
invoke our knowledge concerning the structure of S9[]. By the definition of a store-context (Figure 2.11),
al assignmentsin S29[] must be to tags defined in S9[]. Also, we have assumed that S9[] is nonempty, so
the immediate context of the metavariable M in the definition of S iseither of the form vw.S9[] or the form
v:=N; S®[]. Wework out one of the three simple cases of interference with an assignment rule:
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R = S¥v:=N; w?>x-M]
R = SWw?exv:=N; M]
R’ = v:i=N; w?2X-M

R, = R

Ry = w?sXVi=N; M

R —pubbleassign R
R' —pubbleassign R

This concludes the proof of Proposition4.2.2.

4.3 Chapter summary

We have introduced the general definitions of operational equivaence and proved some simple operationa
equivalences concerning assignment and stores for our calculi. We have chosen the particular operational
equivalences proved in this chapter both because they are representative of theinformal reasoning that pro-
grammers (and compilers) make about programs with assignment and because they are simple; the selection
isin no sense complete. Although one could hope for amore systematic collection of operational equiva ence
results covering more of the usual territory of program transformation, the overall theory must remain unde-
cidable, likeall theories of program equivalence in powerful languages contai ning nonterminating programs.
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Simulation and conservation

In previous chapters we have presented calculi for reasoning about certain programming languages having
assignable variables. We have aready shown the calculi to be reasonable (Church-Rosser) and deterministi-
caly evaluable (standardization). We now turn our attention to showing that our formalisms do indeed have
an interpretation mapping procedures to state transformers on a suitable abstract machine.

Weusethisformal interpretationin twoways. Firgt, it justifiesthe calculi asabasisfor design and imple-
mentation of a programming language, since one can implement the abstract machine. Second, by describing
the abstract machine in terms of alambda-cal culus with constants, we are able to establish that the eager-store
calculusisaconservative extension of thelambda-cal culus so employed. Thismeansthat the added constructs
do not modify the operational semantics of the embedded functional calculus. This property supportsthe as-
sertion that the implied programming language not only implements assignment, but also remains functional .

Section 5.1 introduces the calculi A[Bdoeag] and A[Bdalaz] which provide a view of assignment by mod-
elingastoreexplicitly inthe calculus. Weprovethe equivalence of these cal culi with A[Bd! eag] and A[38!laz],
respectively.

In Section 5.2 we use the newly-introduced cal culus A|Bdoeag] as part of a chain of reasoning that estab-
lishes that the original (implicit-store) cal culus with assignment is a conservative extension of a basic func-
tional lambda-cal culus. Wediscussthe difficulties behind our failureto establish aparalel result for A[Bdolaz]
in Section 5.2.6.

5.1 Simulation of calculi with assignment by calculi with explicit stores

The connection between lambda-cal culi and machines for eval uating them iswell-established, asis the con-
nection between assignabl e stores and machines. In the most basic formulation from the theory of computa-
tion, a state machine or automatonisaset Sof internal states, along with a state transition function mapping
Sto S Landin’sSECD machine[Landin, 1964] elaborates thisbasic notion in order to define an abstract ma-
chine suitabl efor describing the eval uation mechani sm of the expressions making up aprogramming language.
The implementation of an assignable store via a state machine is usually taken as obvious.

The caculi A[Bod!eag] and A[Bd!laz], however, do not model stores explicitly. Rather, they provide an ax-
iomatic basis for reasoning about store-computations by dictating how each assignment affects subsequent
reads. Our goal in thefirst part of this chapter isto trand ate the calculi of concern into intermediate cal culi
having explicit stores. We then invoke the argument of the preceding paragraph to justify stopping with this
intermediate form without proceeding to construct a detailed abstract machine for each calculus.

Aswementioned in Section 1.5, functional programming model sthat represent stores explicitly must usu-
ally account for the fact that use of astore may not be single-threaded, and thus might not be realizable by de-
structive update of an actual machine's store. The caculi we introducein this chapter do not directly address
single-threadedness; rather, thisproperty emerges from the correspondence we provein Section 5.1.2 between
theimplicit-storeand explicit-store calculi. Because we are only interested in explicit-storeterms that corre-
spond toimplicit-storeterms, and because the correspondence rel ation i mposes single-threadedness, thisissue
is subsumed in the results presented in this section.

0 € Sores
M = ... Figure2.8 --- previoudy defined constructs
| vgVo- (M) term M in store o with local store-variablesv
c = {} the empty store
|  o®{v:M} store augmented with a new binding

Figure5.1: Additional syntax for explicit-storecalculi
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domo

The set of store-variablesin the domain of o
olv The binding of store-variablev in store g, if one exists

olv:M The store having binding M for v, and &l other bindingsasin o
Figure5.2: Notation for explicit stores
VoV.o-(WN) — vs{V,v}.o-(N) (ov)
VoVo-(Vi=M; N) — vgV(o!lv:M:)-(N) (0:=)
VoV.o - (V?>X-N) — VvsVo-{[olVv/XN) (ve domo) a?)
pureM — vo{}.{} (M) (Oblock)
Vv = Vu{v} (abbreviation)

Figure 5.3: Common reduction rules for explicit-store calculi

VoV.o-(T(C"eMie---eMy)) — C"o(VgV.O-(TM1))e-- e (VgVO-({TMy)) Opeag
VoVo-(1f) — f Opeag
VoVO - (TAXM) — MX.VgVo- (M) Opeag
Figure 5.4: Reduction rules for eager explicit-storecalculus A[Bdoeag]
VoV.o - (S¥t (C"eMye - e M)]) — C"e(VgV0a- (SEtMy]))e--- o (VgV0- (SZ M)  Oplaz
VoV.o-(S¥tf]) — f Oplaz
VoV.o- (S¥HMM])  —  AX.vgV.o- (SZM]) Oplaz

Figure5.5: Reduction rulesfor lazy explicit-store calculus A[3dclaz]

5.1.1 Thecalculi with explicit stores

Thecalculi A[Bdoeag] and A[Bdclaz] aredefinedin Figures5.1, 5.3, 5.4, and 5.5. Thebasicideaof thesecalculi
is to replace rules fuse, bubble-assign, and bubble-new of A[Bd!eag] and A[Bd!laz] by rules for the explicit
manipul ationof astoreo. Instead of acting asaboundary for observations, the pur e construct initializesastore
computation with an empty store. Instead of observations of the store bubbling from right to left, alocation
of locations, updates, and reads are performed from left to right. The computation within a pure can thus be
regarded as a machine execution embedded within the reductions of an expression-oriented calculus. Stores
are unordered sets of bindingsin which no store-variable is bound more than once; thisis the same notion as
that of finite functionsor records.

It is notable that the syntax for storesin Figure 5.1 admits arbitrary expressions for the value bound to a
store-variable. Thisdefinition conformsto the semanticsimplied inthe definitionsof theimplicit-storecal culi
A[Bdleag] and A[Bd!laz]: thevaluestored issubject tothe evaluation order of application, whichisalways by-
name for our calculi. Thedistinctionbetween A[36!eag] and A[Bd!laz] liesin the eval uation order that pertains
to therelationship between a store-variable and the expression stored, which isan entirely orthogonal issue. It
would be quitesurprisingif merely assigning an expression to astore-variableforced it to be reduced to weak
head normal form!

Figure 5.2 gives the meta-notations that we use in referring to explicit stores in this chapter. Like the no-
tation [M/X] N that we use for substitution, these notations are not themselves part of theformal syntax of the
calculi, whereas the notationc@ v : M is part of the formal syntax.

As Figure 5.1 shows, the explicit-store calculi extend A[3d!eag] and A[3d!laz] with an extrakind of term
denoting a term in the context of an explicit store. This syntactic construct is rather complex because the
scoping of store-variable names is independent of the locality of storesin our calculi. Theterm vgV.o - (M)
declares a set of store-variablesV = {v1,...,vy},n > 0 tobeloca to the notated store o and to theterm M
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(we use V as a compact notation for such a set of variables). The store ¢ may contain bindings of non-local
store-variables, and the terms bound to store-variables may contain non-loca store-variables.

The syntax Vs V.0 - (M) isintended to be used when M isacommand; however, other terms are not prohib-
ited (although we do not assign them an informal meaning—they will al become“stuck™). Itisnot possibleto
prohibit nested occurrences of vg V.0 - { M) because thissyntax model spur e-expressions, and pur e-expressions
can be nested. We tolerate the proliferation of meaningless terms based on this syntax because we intend to
use the explicit-store calculi primarily as atarget of translation from A[3d!eag] and A[Bd!laz]; the terms that
do not actually occur as trandations are thus filtered out naturally.

Thereduction rules specified in Figure5.3 make use of the notationsfor explicit storesthat aretabulated in
Figure5.2. Theserules are straightforward transcriptionsof the meaning of the various assignment constructs
into the notation of explicit stores. Since our notation for explicit stores separates the declaration of the exis-
tence of astore-variablefromitshindingin the store, an undefined store-variableisrepresented by itsabsence
from the store in which it is sought—thisis the side condition on rule 6?. Rule ov merely transfersthelocal
scope of the newly-declared store-variablefrom the command sequencein whichit occursto the explicit store
in which the command was encountered. As awaysin thisdissertation, we observe Barendregt’ s convention
that bound and free names are distinct; thereisthusno danger of semantic gibberish resulting from capture of
occurrences of vin o because theboundvisredly a-renamed behind the reduction arrow where we can't see
it. We adso notethat rule o:= isindifferent to the prior existence of abinding for v in the store ¢ and that al
of therules are indifferent to the locality of declaration of a store-variable.

Rule opock 1Nitidlizesa store; it corresponds to a pure boundary in A[3é!eag] and A[Bo!laz].

The eager- and lazy-store versions of the explicit-store cal culus differ, as before, in the rulesfor propagat-
ing the storeinto the subtermsof areturned value. Inthe eager version (Figure5.4), all storeactionsmust have
been reduced away beforethe storeis pushed past a constructor of the result; this correspondsto the structure
of store contexts S™9[], in which there may be no outstandingreads. In thelazy version (Figure5.5), thestore
may be pushed past the constructor as soon asthefact that aresult is returned can be seen from the structure of
the argument to pur e; thiscorrespondsto the morelenient lazy storecontexts S¥[]. The presence of thestore-
context intherulesin Figure 5.5 refl ects the possibility of pushing the store-computation into the structure of
aresult term before having executed al the commands in the context.

The calculi A[Boceag] and A[Bdclaz] have both the Church-Rosser property and standard orders of re-
duction. Because the proof techniques involved are basically a repetition of the corresponding proofs for
A[Bd!eag] and A[3d!laz] in Chapter 3, we have placed the proofsof these propertiesfor A[Bdaeag] and A[Bdcl az]
in Appendix A.

In the following discussion of explicit-store calculi reductions in an explicit-store calculus are denoted
—o Where the distinction is not obvious from the context. Figure 5.2 gives severa other notatio used in the
following exposition.

5.1.2 Equivalenceof bubble/fuserulesand store-transition rules

In Section 5.1.1, weintroduced calculi that represent a store explicitly. In this section, we consider programs
in A[Bo!eag] and A[Bd!laz] under the reduction rules of A[Bdoeag] and A[Bdclaz]; since every term of each
implicit-store calculus is aso alegal term of the corresponding explicit-store calculus this endeavor makes
sense. Weshow that such programs are assigned the same semantics by boththeexplicit-storeand theimplicit-
store calculi.

Thecentral stepin establishingthisequivalenceisto establish thecorrespondence of A[36!eag] or A[Bo!laZ]
terms with A[Bdcoeag] or A[Bdclaz] terms such that the correspondence relates terms in different calculi that
have the same informal meaning as store operations. Wefirst define the correspondence rel ation and then show
(in a sense to be defined) that the correspondence is preserved under reductions.

In the following definition, we refer to eager store-contexts S%9[] despite the fact that the definition is
applicable to lazy-store calculi as well: we are referring only to the syntactic form of such contexts, not to
their rolein defining reductions for eager-store calculi.

The correspondence relation, which we denote by the symbol =, relates terms of an implicit-store cal-
culi and terms of explicit-store calculi. The relation links aterm of A[3d!eag] or A[3d!laz] (on the left) and
A[Bdoeag] and A[Bdolaz] (on theright). We define = by means of two mutually inductive sets of inference



74

M=M M= M
M=M M?= M'?
SON=veVo - ([]) Mm=Mm M=M' N=N
pureS9IM] = vg V.o - (M') M:=N)= (M :=N)
MeN=M oN (MoxN)= (M >x-N')
M=M M= M’
MM = A .M’ tMZ=1M
M=M M= M
wWM=wM pureM = pureM’

Figure 5.6: The correspondence relation for terms

SH=vVo-([) m=wm

I=vo{h43 (1) v:=M; S| =ysVo!v: M ([]) (v & domo)
S = vgVo-([]) S = vgVo-([])
vS[] = v {V,v}.0-([]) (v € domo)

vi=M; S9[| 2 vV0-([])

Figure5.7: The correspondence relation for store-contexts and stores

rulesgivenin Figure5.6. Therule whose hypothesisisM = M’ acts as the axiom for theinference system; al
but one of theother rulesare thosewe would expect if wewere defining = tobeacongruence. Theexceptionis
theruleinvolving pure, which acts as theinterface to the definition of correspondence between store-contexts
(on theleft) and explicit stores (on the right) given in Figure 5.7.

Among theinferencerulesgiveninFigure5.7 thereisan obviousaxiom rel ating empty store-contextsand
empty stores. Therulefor store-variable declaration straightforwardly rel ates the declaration mechanismsin
thetwo pairsof calculi. Theremaining rulesimplement theinformal notion that the store corresponding to an
implicit store-context records only the most recent (innermost) assignment to astore-variabl e, the presence of
an overriding binding is detected by the presence of the store-variablein the domain of the store given by a
nested application of theinferencerules. Theinterface back into therulesfor terms isthe hypothesisM =M’
of the rulefor introducing the actually effective assignment into both contexts.

This definition of correspondence impliesthat every term or store in an explicit-store cal culus has a cor-
responding term or store context in an implicit-storecaculus:

Lemmab5.1.1 (i) For any term M in an explicit-store calculus, there exists a termimplicit(M) in the cor-
responding implicit-store calculus such that implicit(M) = M.

(i) Likewise, for anyexplicit storecontext vy V.o - ([]) thereexistsanimplicit store-context S9[] = implicit(o)
such that S¥[]| = vgV.o - {[]).

Proof: The proof consists of the obvious structural induction. The base cases for terms are the terminal syn-
tactic classes; the induction for terms is by the rules in Figure 5.6, and that for contextsis by the rulesin
Figure5.7. 1

The next lemma assures that reductions in the explicit-store calculi act as an inverse to implicit, in that
they actually build, step by step, a store corresponding to a store context.
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Lemmab5.1.2 For any term M and store context S29[] in an explicit-store calculus thereis an explicit store
context VgV.o - ([]) such that S[] = vgV.0 - (]} and such that

pureS™M] —* vgV.o - (M).

Proof: Wecanimmediately apply a0piock-reductiontotheinitial term, giving pureS[M] — { } -(S29[M]).
A straightforward induction on the structure of S*9[], carrying out o:=- and ov-reductions as required, builds
astorethat correspondsto S™9[].

Now we come to the central lemmain our proof that explicit-store computations simulate implicit-store
reductions.

Lemma5.1.3 Given terms M’ and N in an explicit-store calculus, and term M = M’ in the corresponding
implicit-storecalculus, if M’ =4 N, thenthereisatermN suchthat N=N and M — N.

In apicture, there exists a term N that makes the foll owing diagram commute:

M N

12
[

Proof: We decompose the problem into one case for each possible reduction rule that might give M’ — N'.
Since therelation = distributes through all term-forming operators in the explicit-store calculus, we can as-
sume without loss of generality that the redex in M’ — N isthewholeterm M’

If M'isa -, &, assoc-, extend-, unit-, or assign-result-redex, the result followsimmediately, since these
rules are a so reduction rulesin the corresponding implicit-storecalculus: wejust takeM =M/, N= N,

The remaining cases are as follows. Weuse Lemma 5.1.1 freely without mention.

Case (1) M' =vgVo-(wW.P).
Inthiscase, M = pureS™|vv.P] for some eager store context S*™9[] and term P such that S™9[] =
VoV.0-([]) and P=P. The result of thelemma then followsfrom the diagram

VgV.0 - (W.P) ——— s {V,v} o (P)

12
[

pureS™[vwv P].

Case(2) M =vgVo-(vi=M5; P)

Inthiscase M = pureS™[v:= My; P] for some store context S®9[] and terms M, and P such that
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S =vgVo - ([]), Ma=M), and P= P . Theresult of the lemma then follows from the diagram

VoV.0 - (vi=Mb; P) VoV.o!v:iMy-(F)

12
[

pureS™¥v:= My; P.

Proving that the correspondence relation is re-established in this case followsfrom an induction on
the structure of S29[] in which the assignment of M to v isthe only one that affects the store. In
the “before”’ case, the assignment is not treated as part of the store-context; in the “after” caseitis
treated as part of the store-context.

Case(3) M'=vgVo-(V?e-x-P)

In this case M = pureS*9|v?>x-P], where S9[] = vsV.0 - ([]) and P= P. Sincethereductionis
assumed to take place, we have v € domo. By the defining rules for = in Figure 5.7, this could
only bethe caseif thereexists an assignment tovin S9[]. Suppose theinnermost such assignment
assignsthe term M to v: the corresponding store must then bind M} to v, where My = M.

The implicit-storeterm in question thus has the form
M = pureSv:= My; SPV?ex P,

where thereisno assignment to vin S5*°[]. An easy induction on the structure of S[] then shows

that M
—* pureSPvi= My; V2o x-S9P]]
- puregg[ '=My; My /X S[P]]
= pureSPvi=My; S[My /X P]
=  pureS™[My /x| P,

wherethetransposition of the substitutionisjustified by thefact that all of iag[] wasoriginaly out-
sidethe scope of the substitutionvariablex. Theresult of thelemmathen followsfrom the diagram

VgV.0 - (V26X -P)

VoV (M1 /X P)

1
[

pureS®\v?ex-P]. —pureS?9[My /X] P]

Wetake it as obviousthat substitution preserves correspondence: amost every rulein Figures 5.6
and 5.7 hypothesi zes correspondence for subterms of the corresponding terms. The only exception
istherulefor overridden assignmentsin store-contexts, but here a substituted term for the assigned
value does not contributeto the corresponding store, so correspondence still holds.

Case (4) M’ =pureMj
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In thiscase M = pureM; for some M1 = Mj. The result of the lemma follows from the diagram

Vo{}{} (M)

pureM;

[
[

pureM;.

Case (5) (A[Bdoeag] only) M’ = vgV.o- (1 (Ax.M1))
We take this case as representative of the purification reductions; the proofsin the other cases are
similar. Inthiscase M = pureS™[t (Ax.M3 )], where S*9[] = V-(0)[] and M1 = Mj. Theresult of
the lemmathen follows from the diagram

VoV.0 - (T (AX.M?)) — MX.VgV.o- (T M)

12
[

pureS9[t (Ax.M1)] — Ax.pure S™[t M4].

Case (6) (N[B3olaz] only) M’ = g V.0 - (SZ[ (Ax.M{)])

Again, we take this case as representative of the purification reductions. The proofs in the other
cases are similar. In thiscase M = pureS@I[SZ[} (A\x.M; )]], where S¥9[] = vgV.0 - ([]), and

SE[ (A.M1)]= SZ[t (Ax.M})

Noting that every eager store-context is also alazy store-context, and that the nesting of two lazy
stor- contextsis again alazy store context, we have the diagram

VoV.0 - (SZ[H (AX.M]) ]y AX. (Vo V.o - ( SZt MY]))

1
[

pureSPISEEI (Ax.My)]] Ax. (pur e SPSF[ My]])

This concludes the proof of Lemma 5.1.3.

The maintenance of correspondence under reduction established by Lemma 5.1.3 forms the core of the
main simulation theorem (Theorem 5.1.7), but the full theorem requires some additional |emmas concerning
the action of imperative reductionsin the implicit-storecal culi on the form of store contexts. Wenow begin a
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series of resultsintended to characterize the behavior of reductionsin command sequences in A[30!eag] and
A[Bd!laz].

Our first lemma notesthat much of the structure of command sequencesis preserved “up to bubbling” by
reductionsin theimplicit-storecalculi.

Definition 5.1.4 A bubble context isa context defined by the productions
B[]:= [] | v?exBJ[].

Lemma5.1.5 (Persistence of store-context) Assume that A[Bdleag] - M —* M’ or A[Bdllaz] - M —* M'.
Then:

(i) IfM=wN thenthereisatermN and a bubble context B[] such that M’ = Blvv.N'].
(i) 1f M =v:=N; Pthenthereareterms N and P and a bubble context B[] such that M’ = Blv:=N’; P].
(iii) If M =t N thenthereisatermN suchthat M’ = tN.

(iv) If M = v?>x-P thenthereisatermP such that M’ = v?ex-P'.

Proof: By inspection of thereductionrulesfor A[d!eag] and A[3d!laz], itisclear that only therules pure-eager
and pure-lazy can remove av or := from aterm. Furthermore, thereis no rulethat can reduce aterm prefixed
with one of these constructsto onethat hasit only within the context of a pure. The only remaining reduction
rulesthat explicitly involvetermsof theformin (i) and (ii) are the rules bubbl e-assign and bubble-new, which
clearly act to embed theformer top-level constructswithin abubblecontext. Similar reasoning establishes (iii)
and (iv).

The next result showsthat, if reduction of acommand-redex isessential in acomputation that produces an
answer, then that redex must occur in the context of a pure-expression. The informal notion of “essentia” is
represented by being a head redex. The proof of Lemma 5.1.6 arguesin several places that a stuck reduction
in an evauation context prevents a term from reducing to an answer. In thisform of reasoning, getting stuck
means never reducing either to part of an answer or to a subterm that makes some containing term a redex.
This clearly preventsthe standard reduction from progressing to an answer, and hence the whole term could
not have reduced to an answer in thefirst place.

Lemmab5.1.6 (Only purepurifies) Let M beaterminA[Bd!eag] or A[Bd!laz], andassumethat M = E[A,] —*
A, where A, isa fuse-, bubble-assign-, or bubble-new-redex that is head redex in M.
Then thereisan evaluation context E; [| and an eager store context S9[] such that M = E; [pur e S29[A .

Proof: Assume the contrary, that is, that M isnot of the required form. We consider each remaining possible
structure of the term M (as determined by the structure of the evaluation context E[]) and show, as a contra-
diction, that these structures cannot reduce to an answer.

Case (1) If E[] = S*™] for some store-context S29[], then Lemma 5.1.5 appliesto show that M 4* A, and
we have an immediate contradiction.

Case (2) Thedternativeisthat the structure of E[] is interrupted by some nested evaluation context that is
not also an eager store-context. We introduce names for the contexts implied by this statment by
asserting that E[] = B4 [E» [S™[]]], where E4[] isan evauation context, E;[] isanon-empty evalu-
ation context that is not an unrestricted store context, and S9[] isan eager store-context. Without
loss of generality, we can assume that E;[] = [] and that E,[] is minimal, that is, that E;[] can be
obtai ned by exactly one application of a productionin Figures 3.2, 3.3, and 3.4. We subdividethis
case according to the form of E[].
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Case(2a) B[] =]]eN.

Assume S9[A,] —»* A. By Theorem 3.7.10, we can choose the reduction sequence
to reduce Ay, first. By Lemma 5.1.5, the reduction can only yield aterm of the form
B[S [N1]], where Ny cannot be an abstraction. Such a residual term can only inter-
act with its context S9[] by means of one of the rules bubble-assign or bubble-new;
hence, there is no way to reduce S™9[A] to an abstraction or to a primitive-function
name. There can thus be no way to reduce the application to an answer; thisis the de-
sired contradiction.

Case(2b) B[] =fe]].
The argument for this case is similar to that for Case (28), noting instead that S9[A,]
can reduce neither to an abstraction nor to a constructed value.

Case(20) Eol] =[] Eaf] = []:=N, E2[] = pureS[t[J].
These cases are dl similar to Case (2a).
Case(2d) Ey[] =[]=xN.

Inthiscase Ex[S™9[A]] isaredex, contradictingtheassumption that A, isthe head redex
(outermost eval uation redex).

Case(2e) B[] =Ni»x].
For thiscase to apply, Ny cannot have theform Eg[A] for any evaluation context Ez[] and
redex A, because thiswould make A, not Ay, the head redex; in other words, N; must be
in head normal form. Also, Ny &>X-Ay, itself cannot be aredex for the same reason. Thus
N; cannot have any of theforms N, >y N3, TNy, or w.N,. Furthermore, if Ny has the
form N, :=N; then Ny isnot astore-variable, because then E;[] would bean eager store-
context, which it was assumed not to be. Now by Lemma5.1.5, A, —* B[S®I[N; ]}, so
ahead-reduction sequence will bubblethe store-variable-reads that are outermost in B[]
to the left, where they cannot interact with any of the remaining possible forms for N; .
Hence the entire term cannot reduce to an answer.

Case (2f) B[] =w/[], B[] =v:i=Nex{],E[] =1]].
These cases all contradict the assumption that E,[] isnot an eager store context.

Case (2g) (in[Bdleag) Eo[] = pureSy[t 1.
Inthiscase M = pureS; 0 [SP9[ Ap]).
By Lemma 5.1.5 or by inspection of the set of reduction rules the residuals of Ay, are
syntactically all command-sequences, having > as their top-level syntactic constructor.
Thereisthusno way for these residual sto interact with their containing 1 construct, and
hence it isimpossiblefor M to reduce to an answer, a contradiction.

Case (2h) (inA[Bd!laz])) Ep[] = pureS[].
In thiscase M = pureS¥[S™9[A,]], and we proceed by the same reasoning as that used
for the corresponding case in A[o! eag].

The only remaining case is E;[] = pure]], hence we must have

M = B4 [E>[S™[An]]] = B [pure SO[AL]].

But thisprovesLemma 5.1.6.

We are now prepared to state and prove the main theorem on the mutual simulation between A[38!eag]
and A[Bd!laz] on the one hand and A[3dceag] and A[3dclaz] on the other. The notion of operationa seman-
tics we use in this proof is of reduction to a constant c°. It is possible to extend this semantics to compound
answers at the meta-level by testing several programs, each of which is the application of a composition of
selection primitivesto the original program. We restrict the form of answer considered because standard re-
duction sequences to constants have a particularly simpleform: they are always head reduction sequences (by
Theorem 3.7.12).
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Theorem 5.1.7 For every closed term M and constant c°,
(i) A[Bdleag] - M = c? if and only if A[Bdoeag] - M = c°.
(i) A[Bdlaz] - M = if and only if A[Bdolaz] - M = .
Proof: Wefirst provethe“only if” direction of the implications.
Assume that A[Bd!eag] - M = c°. By Theorem 3.7.12 there exists a head reduction sequence reducing M
to c®. Wenow carry out an induction on the length of this head reduction sequence.
The base case of the induction is a reduction sequence of length zero, in which case M = ¢ and there is
nothing to show.
For the induction step, assume that the statement of the theorem holds for head reduction sequences of

length n or less, and consider M such that M —* ¢© by head reductions in n+ 1 steps (in the implicit-store
calculus). Then the head reduction sequence from M has the form

M=E[A] - EL] =M —*

for some evaluation context E[], head redex A, and terms L and M’. We now show that A[3dceag] - M = M’
by a case analysis on the form of A.

Casel: IfAisaf-, &, assoc-, extend-, assign-result-, or unit-redex, the result isimmediate because these
reduction rules apply in A[Bdoeag] and A[Bdaolaz] as well.

Case2: A=v:=N;v?>xP
By Lemma 5.1.6 there is an eval uation context E[] and an eager store context S*9[] such that

M = EjpureS®[v:= N; v?>x-P]].
By Lemma5.1.2, M —* Mg in the explicit-store calculus, where
Mg = E[VgV.Ogagy - (Vi=N; V2> X-P)],

where Vo V.0gxg)) - ([]) isthe explicit store context whose existence is guaranteed by Lemma 5.1.1.

Thenwe havethefollowingderivationthat \[Bdoeag] - Mg = M/, whichinturnimpliesA[Bdoeag] -
M = © viathe transitivity of conversion.

Mg = ENgV.Ogagp - (Vi=N; v2>XP)]
—  ENgV.Ogagp ! VIN-(V2eXP)]  (0:=)
—  ENgV.Ogagpy !V N (IN/XP)] (09
—* E[pureseag[ N; [N/x] P[] (Lemma 5.1.2,0:=)

This derivation works equally well for A[Bd!laz] being simulated by A[Bdclaz].
Cae3: A=v:=N;,w?>xP
Reasoning asin the previous case, we have
M = E[pureS®|v:= N; w?>x -P]] — Mg,

where
Mg = EVV.Ogemgpy - (Vi=N; W?>X P)].

We now have the following derivation showing that A\[Bdoeag] - Mg = M’. We are assured that
S*9[] containsan assignment to w because we know that the store-context eventually reduces away;
whereas aread of an unassigned variable w bubblesleftward to meet either the pure or adeclaration
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of w. It must do so via head reductions because we know that the spine of a store-context with a
pure within an evaluation context isitself within an evaluation context.

Mg = ENgVOgap (V:i=N; W?eXxP)]
—  E[NgVOgagp!ViN- <V\/7[>X PY] (0:=)
—  E[NgVOgagp!ViN- <[ ¢W/x] P)] (0?
ENoVOgma (vi=N; [0 lWXP)]  (0:=)
= ENgVoggp ([0 | /x] (vi=N; P))] (Note: x¢ fvN)
—  ENgVOgeg - (W?>XV:=N; P)] (0?)
+*  EpureS¥w?exv:=N; P[] (Lemma 5.1.2)

Cased: A=ww?s-X-PVv#£wW

Once again we invoke Lemma 5.1.6 to place our redex A in context as

M = E[pure S w?ex-P]].

Lemma5.1.2 allows us to begin the following derivation of the desired result. Our assurance that w
is bound in the store rests here on the same ground as in the previous case.

M ENVoV.Ogagp -(WW?>X-P)] (Lemma 5.1.2)
EVo{V,V} Ogagpy -(W?>XP)] (ov)
ElVo {7.v} Ogeap -( [Ogmag LW/ P)]
ENoVOga( (W [Oga LW/ P)]
ENoVOgag)) -([Ogeapy + W/X] W P)]
EVoV.Ogagp -(W?>X WV .P)] (0?)
E[pureseag[\/\/?>x w.P]] Lemma 5.1.2
M.

1T T A

Case5: (A[Bo!eagl/A[Booeag] only) A= pureS29[t (Ax.M)].

Againusing Lemma5.1.2, we have:

M E[pure S9[t (Ax.M)]]

—E>* EVoV.Ogagp (T (AX.-M))]  (Lemma 5.1.2)
—  Ex.vgV. Gseag (tM)]  (Oblock)

«*  EX pureSeag[T M]] (Lemma 5.1.2)
= M.

The cases of the other pure-eager-reduction rules behave similarly.
Case 6. (A[Bd!laz/A[Bdolaz)/ only) A = pureS#[ (Ax.M)].
By the same genera form of reasoning as in the other cases, we have

M E[pure S¥[t (Ax.M)]]

Nl

EVe{}{} -(S%[ A.M)])]  (Oblock)
EMx.Ve{}{} (SZIM])]  (Opia)
—  EPx.pureS¥ M| (Oblock)
= M’

This concludes the proof that A[Bd!eag] - M = c® implies A[Bdoeag] - M = c°.
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We establish the converse by applying Lemma 5.1.3. Assume that A[Bd!eag’] - M = c°. By the definition
of (£), MZM; furthermore, °= c%impliesc® = ¢°. Thetheorem can then be established by pasting together
diagrams of the form provided by Lemma5.1.3 as follows:

!
M—M;- + + » —— ..

This concludes the proof of Theorem 5.1.7.

5.2 Calculi with assignments as conser vative extensions of lambda-calculi

Every term and reduction in the calculus A[B9] isaso aterm or reduction of A[Bd!eag] and A[Bd!laz]. Hence
any convertibility relationthat holdsin A[38] must also holdin A[3d!eag] and A[3d!1az]. Werecall from Chap-
ter 4, however, that the operational -equiva encetheory of alambda-calculusisredly theinteresting theory for
reasoning about programs. The definition of operational equivalence involvesauniversal quantification over
all contextsin acalculus. When we embed aterm from A[39] into a cal culus with assignments, some of these
contexts will contain constructs that are not present in the original A[Bd]. We could thus concelve of a situ-
ation in which the operational-equivalence theory of the imperative calculus either equates or distinguishes
A[Bd]-terms that are not equated or distinguished by the operational -equival ence theory of A[39)].

Inthissection, we show that thecal culi A[Bo! eag] is, infact, aconservative extension of A[3d]: it preserves
the operational-equival ence theory of A[3d] exactly. The strategy we employ isto give meaning-preserving
translations in both directions between the language of A\[Bdceag] and the language of A[38] with specidly-
designed primitives that carry out a simulation of the imperative constructs. The preservation of meaning,
aong with the definability of the constructsin A[9], is sufficient to establish conservative extension.

Before we prove thisresult we must be more precise about what we actually prove. Because we have | eft
the constructors and primitive functions unspecified, every one of the “calculi” proposed in this dissertation
is actualy an entire family of calculi. Up to this point, we have not belabored this distinction because al
our results have held uniformly for all calculi in each family. We must now break this pattern in order to be
precise about our conservative-extension results, sinceit is not the case that every calculus with assignment is
an extension of every member of the family A[30]. Instead, for each calculus with assignment we will show
that there exists a member of thefamily A[Bd] for which the origind calculusisa conservative extension. The
proof of conservative extension will usethisfreedom to construct abasic lambda-cal culusin an essential way:
the constructs implementing the trangl ation from the cal culi with assignments will be new primitives within
abasic lambda-cal culus, and we will construct inverse trand ations that recognize these primitives as such.

We actually carry out the proof of conservative extension using the explicit-store cal culus A[Bdoeag]; we
then usethe results of Section 5.1 to conclude that A[3d!eag] itself isaconservative extensions of A[BJ] inthe
sense in which we use the term here. The proof that A[Bdceag] is a conservative extension of A[BJ] isitself
mediated by atrandation into acaculus Av devised by Odersky [Odersky, 1993b; Odersky, 1994]; Odersky
has shown Av to be a conservative extension of A[3d]. Section 5.2.1 introduces the technica notion of syn-
tactic embedding which forms the backbone of the proof. Section 5.2.2 introduces the relevant features of
the calculus Av, Section 5.2.3 details the trandlation from A[Bdoeag] into Av, Section 5.2.4 gives an inverse
trandation that is needed to show the existence of a syntactic embedding, and Section 5.2.5 joins the pieces
together to give a proof of conservative extension. Section 5.2.5 comments on the difficulty of carrying out
this process for A[Bdolaz].
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5.2.1 Syntactic embedding

The precise statement and proof of our conservative-extension results requires some preliminary definitions.
We devote this subsection to these definitions and to an outline of the general proof method to be employed.
Thefocal point for the proofsinthissectionisthe property of syntacticembedding, whichimpliesconservative
extension but is specialized to be more easily proved with the methods we have at hand.

Definition 5.2.1 (Syntactic embedding) Let A, and Ay be extensions of A[d] with the same set of answer
terms. Supposethat A(A.) D A(Ag). Let E be a syntactic mapping from A, -termsto Ag-terms. Then E isa
syntactic embedding of A, into Ag if it satisfiesthe following two properties:

(i) E preserves A-closed Ag-subterms up to convertibility, that is, for all A, -contexts C[] and A-closed Ag-
terms M,
Ao = E[CIM]] = E[C][M].

(ii) E preserves the conversion semantics, that is, for all closed A, -terms M and answers A,

A FM=Aifandonlyif Ap F E[M] = A.

The notation E[[C]|)[M] used in Definition 5.2.1 is the obvious homomorphic extension of the mapping to
terms to a mapping on contexts by specifying that E[[[]]] = [].

Syntactic embeddings generalize the syntactic mappings introduced in [Felleisen, 1991] in a discussion
of the expressive power of programming languages. Felleisen’s mappings are essentially macro-expansions;
the mappingsallowed by Definition 5.2.1 are somewhat more general. Theimportance of Definition5.2.1 for
our purposes hereis that syntactic embeddings can be used to prove conservative extension:

Theorem 5.2.2 Let A, and Ag be two extensions of A[38] having the same sets of answer terms, and suppose
that A(A.) D A(Ap). If thereexists a syntactic embedding of A, into Ag then for any twoterms M, Nin A(Ao),

M EMZN implies A, EM=N.

Proof: Note: in the statement of the theorem, the syntactic embedding is not notated because every Ap-term
isalso aA.-term.
Assumethat Ay E M = N. Then, for all answers A and A\g-contexts Gy[] such that G [M] and G[N] are
closed,
M FGM]=Aifandonlyif A G[N] =A.

Assume first that both M and N are A-closed. Let E be a syntactic embedding of A, intoAq. Let C[ ] be an
arbitrary A, -context such that C/M] and C[N] are closed, and let A be an answer such that A, - C[M] = A.
Then we have the following chain of logica equiva ences:

A FCM]=A
< NFEE[CM]=A (E preserves semantics)
< N FE[C]M] =A (E preserves A-closed Ag-subterms, — istransitive)
< MFE[CIIN=A (by the premisethat \g E M = N)
< MEFCNI=A (reversing the argument with N replacing M).

Since A and C were arbitrary, we can conclude that A, = M = N.
We now extend the reasoning from closed termsto arbitrary terms by reasoning about their closures. Let M
and N be arbitrary Ag-terms, with fv MUfv N = {xq,...,X,}. Then we have thefollowing chain of reasoning:

M EM=N
< MEMN. MM N (by Lemma 4.1.4)
= MEM MM N . Mq.N (by thefirst part of the proof)
< MEM=N (by Lemma 4.1.4).

This concludes the proof of Theorem 5.2.21
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v € Local names

= .--(Figure2.2)---
|  wM local name v over scope M
| Mi==M; test of name equality

Figure5.8: Syntax of the local-name calculus Av

- (Figure2.3)-- -
vnc"eMie---eMy — cMe(vnMy)e---e(VN.My). Avc"
vnAX.M — A.vnM. AVA
v==Vv — true AV ==
v=w — false VEW) A==

Figure5.9: Reduction rulesfor the local-name cal culus Av

5.2.2 ThecalculusAv

Before we prove the conservative-extension theorem for the calculi of concern, we quickly state why finding
asyntactic embedding of thosecal culi into A[38] isnontrivial. A natural implementation of astorecalculusin
termsof A[38] maps assignments and reads to read and write operationson an actual store. Thissuggestsusing
the explicit-storecal culi defined earlier in thischapter as an intermediate step in theimplementation. Because
all operationa equivalences of A\[3d!eag] and A[Bd!laz] are preserved in the corresponding explicit-store cal -
culi, proving our conservative-extension results for the explicit-store calculi will immediately establish the
results for the implicit-storecaculi as well.

With thisscheme in mind, a storefrom an explicit-storecal culus can be represented in A[3d] asamapping
from store-variables to terms. Unfortunately, store-variables have no obvious corresponding entity in A[38]:
they are pure names with scope and atest for equality, but they are not locuses of substitutionas arethe normal
A-variables. We can try to encode the allocation of names by some technique from pure functional program-
ming, such as passing around asupply of names, but then we cannot fulfill the part of the definition of syntactic
embedding that demands that closed programsin the target cal culus as found in the extended cal culus map to
themselves—name-supply passing is a pervasive transformation (as is continuation-passing).

The papers [Odersky, 1993b; Odersky, 1994] define acalculus Av which specifically solvesthis problem.
Rather than attempting any implementation of locations as some more primitive entity, Odersky’s caculus
providesadirect axiomatization of the important propertiesof distinct names defined over scopes. The calcu-
lusAv isitself aconservative extension of A[38], so it provides another suitableintermediate calculus for the
overall proof that the calculi of concern conservatively extend A[Bd]. Odersky’s proof that Av forms a con-
servative extension of A[38] constructs a syntactic embedding from Av to A[Bd] that encodes a de Bruijn-like
level-numbering scheme for the name bindingsinto the target lambda calculus. The technique of trandating
Av-terms into a name-supply-passing style is ruled out by the requirement that a syntactic embedding must
preserve those A[Bo]-terms that are present in Av.

Basically, Av addsonly onefeatureto A[3d]: the name-introductionconstruct vn.M, alongwithaprimitive
== for detecting the equality of names. To the reader of this dissertation, therefore, \v may just seem like a
stripped-down version of our calculi withassignment. Thereductionrulesof Av areall therulesof A[Bd] (given
in Figure 2.3) augmented as given in Figure 5.9. The calculus Av does not require any construct analogousto
pur eto demarcate subtermsover which local namesarein use—theentireterm actsastheunit of * purification’
when we are concerned to get rid of local names.

RuleAvc" alowsthe scope of alocal name to be pushed down through a constructed val ue; the splitting of
the scope isrationalized in much the same fashion as the splitting of the store-context in the purification rules
of A[Bdleag] and A[Bd!laz]. Rule AvA alows the scope of alocal name to be pushed down through alambda:
abstraction. This allows the lambda-abstraction to be exposed, perhaps to participate in a 3-reduction that
places the argument of the lambdainside of the name's scope: thisis a characteristic mode of computationin
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Av. Asusual, the bound namesv are a-renamable, and we observe Barendregt’ sconvention for the avoidance
of name-capture issues.
Rule Av == behaves similarly to its counterpart in A[3d!eag] and A[Bo!laz].

5.2.3 TrandatingA[3dceag] into Av

Throughout the preceding parts of thisdissertationwehave been abletotreat calculi for eager and lazy storesin
parallel, sinceit hasturned out that the differences between them arerather minor. Wenow cometo theparting
of theways:. the trandationswe are about to define work very differently in the two cases. The situationis
analogous to the treatment of the call-by-name and call-by-value lambda-calculi: the calculi only differ in a
syntactic conditionin their 3-rules, but when we come to trang ate them into continuation-passing style (asin
[Fischer, 1972; Plotkin, 1975; Fischer, 1993]) the trand ations have significantly different structure.

We now give an implementation of A[Bdceag] in terms of a particular member of the Av family. Were-
quire the target calculus to have certain constructors and primitive functions that make our implementation
straightforward. Essentially, these constructs allow us to imitate sum-of-products data types by testing for
unique tags which we know not to be used for any other purposein the target calculus.

The main thrust of the implementation translation given in Figures 5.10 and 5.11 isto define a syntactic
embedding F from A[Bdoeag] to Av. The first requirement to be satisfied is to preserve the Av terms that
happen to be present in the larger language A[Bdoeag]. It iseasy to seethat F satisfies thisrequirement. The
nontrivial portion of the trandation is the implementation of the store constructs by selected new constructs
inthetarget calculus. The essence of thistrand ationisto giveaconcrete functional implementation along the
outlines of the state-transformers delineated in [Wadler, 1992a] (among other places).

Themapping F defined in Figure5.10is defined in terms of the auxiliary definitionsgivenin Figure5.11.
The auxiliary functions themselves are defined as primitive functionsin Av. In these definitions we use a
pattern-matching notation (based on the syntax of functional programming languages) in the interest of con-
ciseness, but the expanded definitions should be clear enough. These auxiliary definitions are essentially the
same as the definitions of state-transformers one would writein a functional programming language. Itisin
these definitions that the ability to freely coin constructors and primitivesin the target cal culus comes into
play.

State-transformers are represented in continuation-passing, store-passing style. A state-transformer is a
function accepting a continuation and a store and producing a result; a continuation is a function accepting
an intermediate result and a store and producing afinal result. This basic structure of the definitionsgiven in
Figure 5.11 reflects this simple conception; however, there is additional administrative structure dictated by
considerationswhich we will treat shortly.

Stores themselves are represented in classic denotational -semanti cs styl e as functionsfrom names (store-
variables) to their bindings. The Av primitive upd serves to construct new stores on this principle. We abuse
notation to give the freshly-devised constructor for representing the empty storein Av the same notation { }
that we use for the empty storein A[Bdoeag].

Valriables and store-variables in A[Bdceag] are mapped to variables and names in Av having the same
name.

Some of the complexity of the trandlation arises from the need to maintain a semantic distinction between
results of store computations and other valuesin the target calculus Av. Such results are wrapped in a distinct
constructor Res; the constructor Unit represents the result of an assignment command. Without thiswrapping,
aterm such as pureM, where M is a functional term in Av that happens to behave like a state-transformer,
would be trand ated to puree M, which might well reduce to aresult. However, the original term pureM will
always get stuck in reduction, since M is not a command. Hence, the naive trand ation scheme would fail to
preserve operationa semantics, and would thus fail to be a syntactic embedding. In Figure5.11, the function
stripisintroduced to coerce wrapped results back to ordinary termsfor passing to other functions. Thisentire
complication essentialy arises as an attempt to encode an abstract datatype in an untyped calculus.

1In[Odersky and Rabin, 1993] the specification of the translation keepstrack explicitly of the mapping between corresponding names
in the two calculi. Although thislevel of attention is required for the strictest accuracy, it encumbersthe technical development, and so
is suppressed here.
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FIf] = f
Flc"] = ¢
FIxj = x
Fivj = v
FIAx.M] = M.F[M]
F[MeN] = FM]eF[N]
FItM] = returneF[[M]
F[MexN]] = binde F[[M] e F [AX.N]
FlvwM] = wF[M]
FIM?] = derefe F[M]
FIM:=N] = assigneF[M]eF[N]
FlpureM] = pureeF[M]
Flve{vi,...,n}.0-(M)] = unwrape (v....w,.F[M]epaireF[o])
Fvi:Mg,... Vo :My] = updevaeF[Mp]e(...(updevieF[[Mi]e{}))

Figure 5.10: The implementation trandation F for A[Bdceag)]

pair = MX.AS.(XS)
unwrape (a,sy = case a of
Rese (C"eMje--- e Mp)
— c"e(Unwrap e (Rese M;,S)) e --- o (UnWrap e (Rese My, S))
Rese f — Ax.unwrape (f ex,s)
pureep = unwrape(pepaire{})
returneaekes = ke (Resea)es
binde peqekes = pe (Ax.qe(stripex)ekjes
stripex = case x of
Resex — X
Unit — ()
derefetekes = case set of Defea— ke (Resea)es
assigneteaekes = keUnite (Uupdeteaes)
{}et = Undef
updeteaes = Au.if t==u then Defea else seu

Figure5.11: Auxiliary function definitionsfor the trandation F

In implementing the store it is necessary to distinguish an undefined binding from all possible defined
values. Thisdistinctionis enforced by introducing the constructors Undef and Def. The trand ation of w.M
intializes the newly-introduced variable (via the auxiliary function newref) to Undef; the trandation of M?
(viaderef) performs an error check for Undef, but the trandation of M := N (viaassign) is indifferent to the
definedness of the store-variable.

Beforeturningto theproofsinvolvingthetrandation F, it may be helpful to discussitsdefinitionon aline-
by-linebasis. The main definition in Figure 5.10 dividesinto two parts. Firgt, al the syntactic ingredients of
A[Bdoeag] are mapped homomorphically to their cognates, if any, in Av. Second, the store-related constructs
of A\[Bdoeag] are each trandated into an application of the appropriate auxiliary primitive from Figure 5.11.

These auxiliary primitivesthemselves can be organized into severa groups. Inthefirst group we havethe
functions bind and return which provide the basic glue for trand ations of compound commands.. The mem-
bers of the second group (newref, assign, and deref) implement the store-commands as state-transformers,
taking a continuation k and a store s as their last two arguments. The function pure stands in a group by it-
salf; the remaining functions provide administrative services. With this grouping in mind, we now give an
individual account of the function definitions.

The functionsbind and return are strai ghtforward encodings of the corresponding commands..
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We now begin the proof that F isindeed a syntactic embedding. The requirement in Definition 5.2.1 (i)
isaready satisfied by construction, since F is homomorphic on the fragment of Av that is contained within
A[Bdoeag]. We thus move on to the proof that F preserves semantics. This proof requires establishing that
the convertibility relation is preserved in both directions across the trand ation. We prove one direction here;
the reverse implication will be proved in Section 5.2.4.

Lemmab5.2.3 F isstableunder reduction, that is, for all terms M, N in A\[Bdoeag],

A[Bdoeag] - M — N implies Av & F[[M] = F[[N].

Proof: Wecarry out acase anaysis according to the reduction rule by which M — N. The derivationsfor the
store-related cases al follow the same general pattern: carry out thetrandationinto Av and reduce away all the
administrative paraphernaiaof thetrand ated definition, performthe crucial stepsthat carry out the semantics,
and then reverse direction to add back administrative material and reverse the trandlation.

Wegivesevera representative casesinfull detail; omitted cases are each similar to some case that isgiven.

Case (1) B. Inthiscasethereductionin A[Bdoeag] is
(AX.M) eN — [N/X] M.

The trandlation F[[] is both compositional and linear, that is, the trandation of a term contains ex-
actly one copy of the trand ation of each of its subterms. Moreover, F[[]] maps A-variables to them-
selves. These facts are sufficient to establish that substitution commutes with translation, and we
have in the tranglation the following chain of conversions:

FI(AX.M) o N]
(Ax.FM]) e F[IN]]

= [FINI/X FIM]
= F[IN/XYM]
Case(2) &
In this case the reduction in A[Bdceag] is
feV — (f,V),

whered( f,V) isasinFigure 2.3. Thiscase clearly goes through under the assumption that the defin-
ing terms N¢ Ny, ,N¢ o0 Of the &-reduction are subjected to the translation to give their counterparts
in thetarget calculus Av.

Case (3) assoc. Inthiscase thereductionin A[Bdoeag] is

MexN)py-P - Mpx-(Ney-P),
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and we havein the Av trandation the following chain of conversions:

FI(MsxN) oy P]
binde (bind e F[[M] @ (Ax.F [N])) e (A\y.F [P]])
(by definition of F)
= Ak.(binde F[[M] e Ax.F[N])) e (AX .(Ay.F[[P]]) e (Stripex) e k)
(by definition of bind)
= MAK.F[M] e AX".(AX.F[[N])) e (Stripex’) ¢k')) ¢ AX'.(Ay.F [[P]) ® (strip e x') e k)
(by definition of bind)
= ?:;IE)[[M]] o (A .(AX.FNJ) e (stripex’) e AX .(Ay.F[[P]]) e (stripeX) e k))
y
= ?Igl;)[[l\/l]] o (A" [(stripex”) /X] F[[N] @ AX .(Ay.F[[P]]) e (StripeX) e k))
y

Starting with the trang ation of the reduct, we have the derivation

FIMex-(Ney-P)]
= hbinde F[M] e (Ax.binde F[[N] e (Ay.F[P]]))
(by the definition of F)
= M.F[M] e (AX.(Ax.binde F[[N]] e (Ay.F [P[)) e (stripe x) ek)
(by the definition of bind)
= M.F[M] e (AX.(AX.Ak.F[N]] @« AX'.(Ay.F[[P]]) @ (Stripex’) ek)) e (Stripe X' ) e k)
(by the definition of bind)
— ?K.IE)[[M]] o (AX . ([(stripeX)/X] AK.FN] o (AX".(Ay.F [P]) o (StripeX’) ¢k))) ¢ k)
y
= MF[M] e (AX.(Ak.[(stripexX)/X] F[[N] @ AX".(Ay.F[[P]]) ¢ (Stripe x’) e k)) o k)
(because the original scope of xis N only)
?IS.IE)[[M]] o (WX .[(stripeX) /X F[[N] @« AX".(Ay.F[[P]]) @ (Stripex’) e k))
v B).

Since the two derivations reach the same term (up to a-renaming), the redex and itsreduct are con-
vertible (and hence operationally equivaent).

Case (4) unit.
In this case the reduction in A[Bdceag] is

(T M)e>x:-N — [M/X]N.

Starting with the trang ation of the redex, we obtain the derivation

FIL(t M) o x-N]

binde (returne F[M]]) e (Ax.F [N]])

(by definition of F)

—  Aks.(Aks.ke (Rese F[[M]) es) e (AX'.(AX.F[[N]]) o (Stripe X ) e k) e s
(by the definitions of bind and return)

— AkS.(AX . (AX.F[[N]) ¢ (stripe x') ek) e (Rese F[[M] ) & S
(by B)

— Aks.(AX.F[[N])) o (stripe (Rese F[[M])) e ke s
(by B)

—  Aks.(AX.F[IN])eF[[M] ekes
(by definition of strip)

—  Aks.[F[M] /X F[N] e xes.
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Starting with the trangl ation of the reduct, we obtain

FIIM/XN]
[F IMT /X FIN]

(by the same argument used in the case of [3).

Since we assume that n-reduction is arule of Av, the two trandations are convertible (and hence
operationally equivalent).

Case (5) extend.

In this case the A[Bdceag] reduction takes the form

(WM)exN — WMex:N..

Starting with the trand ation of the redex, we obtain

FI(vw.M) >xN]
= binde (w.F [M])e (Ax.F [N])
(by the definition of F)
— Aks.(W.F[N])) e AX .(AX.F[[N]]) e stripe X e k) e s

(by the definitions of bind)

—  Aks.(vwAks.F [N ekes)e (AX .(AX.F[N]]) e stripeX ek)es
(by n)

— Aks.(Aks.v.F [N] ekes)e (AX.(AX.F[[N]]) e stripeX ek)es
(by AVA)

— Aks.WW.F [N] e (AX' .(AX.F[N]]) e stripeX e k) e s
(by B).

Starting with the trand ation of the reduct, we get

FIVM>x-NJ

w bind e F[[M] e (Ax.F [N])

(by the definition of F)

—  WAks.F[[M] e AX .(AX.F[N]]) e (StripeX) e k) e
by the definitions of bind

— Aks.W.F[[M] e AX .(AX.F[N])) e (StripeX) e k) s
(by AVA).

Since both derivationsmeet athe same term, thetrand ations of the redex and reduct are convertible
and hence operationally equivalent.
Case (6) ov.

In this case areduction takes the form

VoV.o- (WM) — vs{V,v}.o-(M).
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Starting with the trand ation of the redex, we obtain the derivation

FveV.o-{wM)]

unwrape (Wi ... Wy .(wW.F [[M]) e pair e F[[0]])

(by the definition of F)

< unwrape (Wi ... Wn.(W.Aks.F[[M] e kes)epaireF[o])

(by n)

— unwrape (Wi ....Wn.(Aks.w.F [M] ekes) epaire F[0])
(by AVA)

— unwrape (Wi ....Wn V.F [M] e pair ¢ F[[0]])
(by B).

The trandation of the reduct is given by

Flve{v,v}.o-(M)]
= unwrape (Wi.... Wn.VV.F [M] e pair e F [o]))
(by the definition of F).

We have thus shown that the trandl ations of the redex and reduct are convertiblein Av.

Case(7) 0?.

In this case areduction takes the form

VoV.0 - (V?eX-M) — VsV.o- ([0 v/X] M).

The fact that the reduction takes place assures usthat v € domao. Starting with the translation of the
redex, we obtain the derivation

FvoV.o- (v?>Xx-M)]

unwrape (Vi ... Wp.(bind e (deref o v) o (AX.F [M]))) ¢ pair e F [0]))

(by the definition of F)

unwrape (Vv ... W .(Aks. (deref e v) o (AX'.(AX.F[[M]) @ (StripeX ) ek) o 5) e pair ¢ F[0]] )
(by the definition of bind)

unwrape (Vi ... Wy.(deref o v) ¢ AX'.(AX.F [M]) e (StripeX) e pair) e F[[0]])

(by B).

unwrape (W ... Wp.case F[o]ev of Defea— K)

where K= (AX.(AX.F[[M]) o (stripe x') e pair) e (Rese a) o F [O]]

(by the definition of deref and ).

It should clear from the implementation of storesin Av that the presence of a binding for vin o
impliesthat F [[o]) e v— Def o F[[F [[o] | v]. Using this observation, we continue our derivation:

— LJ.r.1wrapo (W1.... Wn. (AX . (AX.F [M])) ¢ (stripe X ) e pair) e (Rese F[[o ] V]) ¢ F[[0]))

(by the discussion above and 3)

— unwrape (Wi .... Wn.(AX.F[[M])) ¢ (stripe (Rese F[[c | V])) e paire F [0]))

(by B)
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Starting with the trangl ation of the reduct, we obtain

Flvevo-(fol v/x M)]

unwrape (Wi .... Wy F[[[0] v/X] M] e pair e F[[0]])

(by the definition of F)

unwrape (W .... Wy [F [0 V] /X] F[[M] e pair e F[[0]])
(by the substitutivity of F)

o:=. Inthiscase thereduction in A[Bdceag] is
VoV.o - (V:i=N; M) = vgV.(o! v:iN) -(M).

We show that this conversion trandates into an operational equivalence viathe following chain of
reasoning.

FveV.o-{v:=N; M}]

unwrape (Wi .... Wy.(bind e (assigneve F[[N]])  (Az.F [M]])) e pair e F[[0]])

(by the definition of F; z has no bound occurrences)

— unwrape (Wi .... Wy.(assigneve F[[N]]) e (AX'.(Az.F [[M])) e (strip e X' ) e pair) e F[0]])
(by the definition of bind and )

— unwrape (Wi ... Wn.(AX'.(Az.F [M])) e (Stripe X) @ pair) e Unite (upd e ve (Def e a) o F[[0])))
(by the definition of assign and )

— unwrape (Wi ... Wn.((Az.F [M])) e (stripe Unit) e pair) e (upd e ve (Def e @) o F[[0]]))
(by B)

— unwrape (Wi .... W,.F [M] e paire (updeve (Def e a) o F[[0]))
(by B, noting that z has no bound occurrences)

Starting with the trangl ation of the reduct, we obtain
FlveV.(o!v:N)-(M)]
= unwrape (Wj....wWn F[[M]epaireF[c!v:N])
(by the definition of F)
We have the desired result if we can show that
updeve (Defea)e Flo]] = F[a!v:N]
inAv.

Oblock -
In this case the reduction takes the form

pureM — vg{}{} -(M).

Starting with the trang ation of the redex, we obtain the derivation

F[pureM]
= pureeF[[M]
(by the definition of F)
— unwrape (F[[M] epaire {}),

which is exactly thetrandation of thereduct vg{} .{ } -(M).
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Case (10) Opeag. Using the purification of an abstraction as a representative case, the reduction in A[Béoeag]
takes theform
VgV.0 - (T AX.M) = AX.VgV.0 - (1 M).

We establish the semantic faithfulness of F in this case viathe following chain of reasoning:

FlveV.o- (1 Ax.M)]
unwrape (Wi .... Wy (returne (Ax.F [M]])) e pair e F[a]])
(by the definition of F)
— unwrape (Wj.... Wy pair ¢« Rese (Ax.F [M]]) e F[[0]))
(by the definition of return and 3)
— unwrape (Wj.... Wn.{Rese (A\x.F [M]),F [a]]})

(by the definition of pair)
— unwrape (Wj.... Wn .Rese (AxX.F [M]]),vv1.... wn .F[a]])
(by Avc")

—  AX.unwrap e (Wi .... Wy .Rese F[M],vv; ... wi F [o])
(by the definition of unwrap, 3, and ).

The trandation of the reduct is given by

FAXx.vgV.o- (1 M)]
= Ax.unwrape (V... Wy.(returne F[M]) e paire F[[0]),

from which asimilar derivation leads to the last term in the derivation from the redex. This estab-
lishes the convertibility of the trandations.

The proofsinvolving the other forms of Gpeag-rule are similar.

This concludes the proof of Lemma 5.2.3.

524 Reversingthetrangdation

Lemma 5.2.3 shows that convertibletermsin A[Bdoeag] are mapped by F to operationally-equivalent terms
in Av. This result goes part of the way toward showing that F preserves semantics, since it shows that F

preserves semantic equalities. However, we are al so obligated to show that semantic distinctionsare preserved
aswell. The present section is dedicated to proving the implicationin thisdirection.

Todo so, wedefinealeftinverse F 1 for F, and show that F ~ al so preserves semanticsin the same sense
that F does. Thedefinitionof F~1 isgiveninFigure5.12. Since F~1 only needsto apply to Av-terms that are
intherange of F, not al possible Av-terms are represented in the left-hand-si des of the defining equations for
F~L. One particular nuance of the definitionis that terms of theformvww.M in Av arisein two different ways
asaresult of F: asatrandation of aA[Bdoeag] term of the form vw.M’ | or as the trandation of a \[Bdceag)]
term of theforma-(M'). The definitionof F~1 takes advantage of the detectabl e syntactic difference between
these two cases to distinguish them for the purpose of mapping them back to their original forms.

Lemma5.2.4 (Left inverse) For all terms M in A[Bdceag],
FLFIM]] = M.

Proof: This proof of Lemma 5.2.4 is a straightforward induction on the structure of M; the definitionin Fig-
ure5.12 does al thework. B

Lemma5.25 (F~! issubstitutive) If M and N aretermsin Av such that F~1[M] and F~1[N] are defined,
then
FHIN/IM] = [F [N X F M.
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F_l[[f]] = f
F-l[c"] = ¢
FIx] = x
Fiv] = v
FIAx.M] = MF-1[M]
Fl[MeN] = F1[MJeF~1[N]
F-i[wM] = wF-1[M]
F-l[derefeM] = F~1[M]?
F-1[assigneMeN] = F~1[M]:=F~1[N]
F-l[returneM] = +F~1[M]

F-L[bind e M e (Ax.N)] F-1[M] oxF ~2[N]

F-l[pureeM] = pureF~1[M]
F-llunwrape (wi....Wn.(pes))] = Voivi,...,Vn}-S7L[S] (P[Pl
S =
Sl[upde (Defea)eves] = S1[g]!v:a
P~*[pepair] = F~*[p]
P~'[pe (A\x.qe (Stripex)ek)]] = FI[p]exP1[qek]

Figure5.12: Theinversetrandation F~1 from Av to A[Bdoeag]

The form in which we state the main lemma of this subsection requires some justification. We are in the
process of attempting to show that F preserves operational distinctions by showing that its left inverse pre-
serves operational similarities. The basic datum of operational semanticsisaterm (in a context) reducing to
an answer. If it helps our proof in some way, we are free to select a particular reduction sequence that wit-
nesses this fact. In the present situation, such an approach is desirable, since only certain reductions keep
the reduct within the image of the map F. However, F was designed so that reductions of its trand ations of
terms denoting commandsin A[Bdoeag] would have an easy interpretation asadeterministic machine. Infact,
the (deterministic) standard reduction ordering in Av corresponds to the execution order of thisnotiona state
machine. Hence the following lemma refers to standard reductions only.

Lemmab5.2.6 Thetrandation F ~1 isstable under standard reduction. That is, for all termsM and N in Av
such that
AWEM—=sN—=" A

if F~1[M] is defined, then sois F~*[N]], and
AlBSceag] = F~*[M] = F~*[N].

Proof: The proof is a case analysis on the form of the redex A by which M — N in the hypothesis of the
lemma. Wegive only one representative case here, that for the trang ation of the store-manipulatingrule c:=.
The other cases yield similar derivations.

Case (1) A=assigneaenekes.

Since the reduction appears in a standard reduction sequence to an answer A, A must occur in a su-
perterm of the form unwrape A, k must be a continuation of the form Ax.qe (stripex) k', and s
must be a store; otherwise, reduction would get stuck before an answer could be reached.

In Av thereduct R of A isthen

[Unit/X] (qe k' e (updene (Def e X) o 5)),
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and we have to show that
NBdoeag] k= F~[unwrap e WA] = F~[unwrap e WR].
The left-hand side of this operationa equivalence expandsto

VoVSTH[s] -(P~[assigneneaek]). (5.1)

Weturn first to the store portion of thisterm. Since the entireterm isa product of trandationviaF,
we can rely on s having the form

upde Nmeame (... (upden;ease{})),

for some names n; and terms a;. Since we know (by hypothesis) that the reduction of thisterm will
not get stuck, we can now assert that the particular name nisin the domain of s and hence isequa
to at least one of the n;. We can thus safely assume the n € domS—1[s].

We now turn to the command part of the inverse trandation 5.1. Since A[Bdceag] has the special
rule assign-result which applies when the functional result of an assignment command is actually
observed, we need to consider two cases according to whether thevariablex occursfreeintheportion
q of the continuation expression k = Ax.qe (stripex) e k. It iseasy to see that x cannot occur free
ink'.

We then have the following chain of reasoning in A[3dceag]:

Vo V.S - (P~1[assignene ae (Ax.qe (stripex) e k'}])
= VoVST (n:=F[a]exP1[qeK])
(by the definition of P~1)
= VoUSL[g] -(n:=F 2[a]; [() /X (P~[ae KT))
(by assign-result and )
Vo V.S - (n:=F~1[a]; (P~1[[Unit/x] qeKT))
(by Lemma 5.2.5)
= Vou(S~Y[g! n: F~2[a]) - (P-L[[Urnit/x] oK)
(by 0:=)
= VoW(STH! n: F~ a]) -(PH[([Unit/x] q) ¢ KT)
(sincexisnot freein k')

From this point in the derivation, we give two aternate sequels, one for each of the two possible
forms of the continuation expression k'.

If K hastheform Ay.q' e (stripey) e k”, the derivation continuesas follows:

VoV.(STLS ! n: F=1[a]) - (P~1[([Unit/X] q) e Ay.q e (Stripey) e K'])
vo¥(S[S]! n: F2a]) - (FX[([Unit/X ] >y [d' o K'])

(by the definition of P~1)
F~1[unwrap e ([Unit/x] q
(by the definitionsof F~1
F[R]

Ay.q e (stripey) ek’ (upd e ne (Def e Z) 0 5))]

) e
,S71, andP1)

If, on the other hand, the continuation expression k' is of the form Ax.pair, then the derivation can
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be continued as follows:

Vo V.S ! n: F1[a] -(P~1[([Unit/x] q) e pair])

Vo VST ! n: F~1[a] - (P~ [[Unit/X q])

(by the definition of P~1)

= F~1[unwrap e ([Unit/x] q) epaire (updene (Defe a) e g
(by the definitionsof F~1 and S—1)

= FR]

This concludes the proof for the case in which x occurs free in g. When x does not occur freein g,
the steps in the derivation are the same except that the step involving assign-result is omitted, and
thereis no need to carry dong the substition of Unit for x.

This concludes the proof of Lemma 5.2.6.

525 Establishing conservative extension

We now have all the ingredients necessary to establish our desired conservative extension result. We first
observe that we have in hand a syntactic embedding of A[Bdoeag] into A[BJ].

Proposition 5.2.7 Thetrangation F isa syntactic embedding of A[Bdoeag] into A[BJ).

Proof: Wefirst show that F preserves A-programs. Let M be aclosed A[Bd]-term. Then by an easy induction
on the structure of M we can establish that F[M] = M. Since there is a syntactic embedding E, of Av into
A[B9], E, [M] = M (syntactic embeddings preserve programs). Hence the composed mapping E; = E, oF
preserves programs.

We now show that E; preserves semantics. Since E, isa syntactic embedding thisfollows from the con-
dition

ANPdoeag] - M= A ifandonlyif Avk F[[M]=A
for al terms M and answers A in A[Bdoeag].

We show each direction of the “if and only if” separately. First, wetackle“only if”. Assumethat M = A.
Then by an induction on the length of the reduction sequence from M to A (using Lemma5.2.3 at each step),
we obtain F[[M]] = F[A]]. But thelatter term equals A by the preservation of programs.

Now we deal with “if”. Assume F[[M]] = A. Then by an induction on the length of a standard reduction
from F[M] to A, we obtain F~1[F [M]] = F~1[A]. The right-hand side of this operational equivaence
equals A by the preservation of programs, and the left-hand side equals M by Lemma 5.2.4. Thus we obtain
M = A, which iswhat must be proved. i

Theorem 5.2.8 (Conservative extension) A[Bdceag] is a conservative operational extension of A[38]: for
any two A[Bd]-terms M, N,

ABS] E M= N ifandonlyif A|Bdceag] =M =N.

Proof: By Proposition’5.2.7, there is a syntactic embedding of A[Bdceag] into A[3d]. By Theorem 5.2.2, this
impliesthat A[Bdceag] isan operational extension of A[Bd]. It remainsto be shown that the extension is con-
servative,

To provethis, let M and N bearbitrary termsin the common language of A[38] and A[3dceag], and assume
that A[Bdceag] E M = N. By thedefinition of operational equivalence, thissaysthat, for all contextsC[] such
that CM] and C[N] are closed, we have

A[Booeag] - CIM] = A ifand only if A[Bdoeag] - CIN] = A.

Since this statement istruefor al A[Bdoeag]-contexts, it istruefor that subset which are also A[[38]-contexts.
Restricting the statement to those contexts, and observing that M and N are A[38]-terms and hence only have
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A[Bo]-redexes, we establish the statement
ABY] - CM] = A ifand only if A[Bd] - CIN] = A,

which asserts that A[Bd] = M = N, which wasto be proved. i

Corollary 5.2.9 A[3d!eag] is a conservative operational extension of A[Bd]: for any two A[3d]-terms M, N,
ABS] EM=N ifandonlyif A[Bdleag] = M = N.

Proof: Thisfollowsimmediately from Theorems5.2.8 and 5.1.7.

5.2.6 Conservativeextension for A[Bo!laz]

Constructing a trandation from A[Bdclaz] into A[33] has so far proved a severe challenge for the techniques
used in thissection. The problem is not in the eval uation order itself—the resources of continuation-passing
styleare sufficient for modeling the eval uation order werequire. The problemisthat we haveother constraints.
The nesting of v-constructs requires that later commands in a chain be lexically contained within thetransa-
tions of earlier commands, but the natural functional implementation of alazy store places later commands at
outer levels so that theresult appears outermost and causes the execution of earlier commands by propagation
of demand. We have experimented with a coupl e of approaches but without success so far.

5.3 Chapter summary

This chapter has established the rel ationship between the operational semantics of the calculi of concern and
the operational semantics derived from consideration of store-machines. Furthermore, the resultsof thischap-
ter show that the eager-store assignment cal culus A[36!eag] can be viewed as a conservative extension of a
basic lambda-calculus. We conjecture that the same is true of the lazy-store calculi but we have so far had
only partia success in constructing a proof of thisfact along the lines of the proof offerred for A\[38! eag].



6

Typed lambda-calculi with assignment

Up to this point, our presentation of lambda-calculi with assignment has been entirely in terms of untyped
calculi. We have shown that these calculi offer a suitable basis for a theory of functional programming with
assignment. Nevertheless, we have several motivationsfor considering the construction of type systems for
these calculi:

e Thecurrent standard practicein functiona programming language design isto devise typed languages.

o A significant precursor of our work, the Imperative Lambda Calculus of Swarup, Reddy, and Ireland
[Swarup et al., 1991; Swarup, 1992] is a typed system, and the relationship to the current work has
never been stated precisdly.

e Thecaculi A[Bd!eag] and A[3d!laz] have a coupleof rough edges that can be smoothed by theintroduc-
tion of types:

— Itispossibleto have runtimeerrors (stuck terms) resulting from attemptsto read unitialized store-
variables or store-variables introduced in outer pure-scopes.

— It is possible for purification to fail owing to an attempt to return an inappropriate value as the
result of a store computation.

— Asdiscussed in Section 2.6.3, the interpretation of store-variablesas locationsisinhibited by the
inability of the untyped calculi to guarantee that store-variable names are used only locally.

For thesereasons we now turn our attentionto theconstruction of typed versionsof A[Bo! eag] and A[Bd!laz].
We make two contributionsin so doing. First (and most distressingly), thetype system of Imperative Lambda
Calculus, aswell asthetypesystem for A[30! eag] previously proposed by Chen and Odersky [Chen and Oder-
sky, 1993; Chen and Odersky, 1994], is flawed, as has been pointed out in [Huang and Reddy, 1995]. We pro-
pose a hew type system to correct thisflaw and establish its important properties. Second, we establish that
thistype system a so suffices for A[38!laz].

The guiding slogan of these type systems, as for all modern polymorphic type systems, comes from Mil-
ner’s seminal paper on the ML type system [Milner, 1978]: well-typed programs do not go wrong. In our
context, thiswill mean that, in addition to assuring that al function applications match the type of the actua
argument to the input type of the function, and that values stored in a store-variable have the same type over
time, these type systems assure that well-typed pur e expressions never get stuck.

Section 6.1 introduces the core Hindley/Milner polymorphic type system, which serves as background to
the systems considered in this chapter. Section 6.2 discusses the additional requirementsimposed on atype
system by lambda-cal culi with assignments. In Section 6.3 we present the Chen/Odersky type system, both
to exhibit its known flaw and to serve as concrete introductionto the more successful type system LPJ™ to be
presented in Section 6.4 aong with the proof of its safety for A[3d!eag] and A[Bd!laz]. Section 6.5 examines
the possibility of devising an untyped analogue of the full Launchbury/Peyton Jones typed language.

Our consideration of type systems in this chapter is confined to their safety properties only; we do not
consider the issue of implementing type-checking or type-reconstruction algorithms, or even the question of
whether such anagorithmexists. Althoughitisunrealisticto proceed withapractical language designwithout
knowing whether type-checking can beimplemented, we exclude these subjectsin order to limit the scope of
thepresent investigation. Thereis, infact, littlereason to doubt that thetype system we proposein Section 6.4
possesses reasonabl e typing a gorithms.

6.1 TheHindley/Milner polymorphictype system for functional languages

The untyped calculi we consider have a common functional core formed by the calculus A[BJ]. Inthissection
we present the Hindley/Milner polymorphic type system [Hindley, 1969; Milner, 1978; Damas and Milner,

97
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M &= (---Figure22--.)
| let x= Mlin M-

Figure 6.1: Syntax of the let expression

let x = Mlin My, — [Ml/X] M»

Figure6.2: Reduction rulefor let

Types
Typevariables
Type constructors
Type schemes
Type environments

Py
5
MM MMM

0—6 function types
K"6, ... 6, constructed types
06 | va.o

{} | Lx:6

Figure6.3: Syntax of typesfor the Hindley/Milner polymorphic type system

rNM:8 -0 Fr-N:9@

(ConSt)Fl—c”:Gl—>...—>6n—>6(cn:elﬁmﬁen_>e) (App) F-MeN:0
(Prim) ——————— (f: 6, — 6,) Ly FNig FxiobM:e
MEih-=6 (Let) MN-leey=NinM:0
(Var) —(x:0¢€T) .
M=x:06 (Gen)%(angvr)
(Ab9 rx:6+M:8 -va.0
TEXM:8 —6 (Spec)m
Mr=M:[B/ajo

Figure6.4: Typing rulesfor the Hindley/Milner polymorphic type system

1982] for thiscommon core languagein theform in which weintend to build uponitin later sections. Figures
6.3 and 6.4 give our version of the typing rules for the Hindley/Milner type system.

The main features of thistype system are type variables, which may be introduced on the same basis as
explicit types, and type schemes, which quantify types over free variables. Type polymorphismis restricted
in the Hindley/Milner system by requiring that al such quantifiers must be at the outermost level in atype
expression; this restriction is enforced by the syntax of types and type schemes givenin Figure 6.3.

Thelet construct is given an added meaning in these calculi in order to providea syntactic notation for the
introduction of polymorphism. Figure 6.1 givesthe syntax of the basic functional language including the | et
construct, and Figure 6.2 gives the reduction rule for the let construct. The specia typing behavior of let is
givenby theruleLet in Figure6.4: thistyperuleistheonly onethat applieswhen avariableisassumed to have
atype scheme rather than atype. It is because of thisspecia typing behavior that we cannot merely stipulate
that let x = M1 in My reduces to (Ax.M>) e M, for the latter term can only reflect a single monomorphic
instantiation of the type of x, which would violate the usua requirement that reduction preserves typability.

Since none of the syntax-specific rules except for Let alow for type schemes, the Hindley/Milner type
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M= M: cX1:01,...,%:02,...-M:0
(Weaken) _reEm:8 (Permute) L 22
rx:0+-M:0 ...sX2:0p,... % :01,... FM: 0

Figure 6.5: Structura rulesfor type derivations

system providesaway of introducing and eliminating type schemes by using therules Gen and Spec. Therule
Gen dlowstheintroductionof aschematic variablea provided that no typeassumed inthetypeenvironment I
hasafree occurrence of a. Informally, thisside conditionmeansthat thetypejudgment I' - M: g isindifferent
as to what actua type that may be represented by the type variable a. The rule Spec expresses the inverse
process of instantiating a type scheme with any particular type. Informally, since the type scheme could only
have been established by indifference as to the actual type to take the place of a, this specialization ought to
be safe. The following type derivation of a polymorphictype for a use of theidentity functionillustratesthe
use of theserules:

(Ver)

(Abs) X:ok X a
(Gen) FAXX:a—=a
FAX.X:Vo.o —a

(Speo) : (Const) —
(App) FAX.X:Int = Int F1:Int

F (Ax.x) 1: Int

One feature of our presentation of the Hindley/Milner type system is not present in Milner’s paper, but is
adopted following present practice (including [Chen and Odersky, 1994]): we assume the existence of type
constructors K" of arity n. These type constructors are useful in typing the value constructors of the basic
caculus. For example, if our lambda-calculus contains a constructor pair of arity 2, we may wish to posit
a congtructed type Pair such that pair has type Va.¥p.a — B — Pair a 3. Since vaue-constructors in our
basic lambda-cal culi subsume constants, the introduction of type-constructors also serves to define types of
constants, such as the type of the integers, as nullary type constructors.

In addition to constructed types, the basic type system in Figure 6.4 provides a rule that assigns a pre-
determined typeto primitive function names. In order for the type system to prevent well-typed terms from
getting stuck, we must assume that these primitive functions are defined on al arguments of their argument
type, where f being defined on an argument V meansthat f ¢V isad-redex. Intermsof types, we assume that
for every primitivefunction f withtypet; — T, and every value-constructor c” such thatc" e M; e - - - « M, has
typeTy, fe(c"eMje--- ¢ My) isdefined and has type1,. We make a similar assumption for primitives that
takefunctional arguments: if - f: (11 = o) = T3 and - AX.M : T3 — T, then f ¢ (AX.M) isaredex; likewise
for F f': 1y = 1, and f e f'. In addition to forming the base case of type safety for our functiona program-
ming languages, these restrictions eliminate the possibility for such pathological primitive function types as
Ya.VB.a — [ because there is no way to generaize to such polymorphic types from the concrete defining
application terms that we are required to provide for each primitive function. The typing of constructorsis
specified by type axioms of the same form as those for primitivefunctions.

Our reasoning with typederivationsinthischapter will make use of additional rules, called structural rules,
givenin Figure 6.5. The rule Weaken alows us to add irrel evant type assignments to an assumption without
disturbing the conclusion; the rule Permute | ets us reorder the type assignments within a type environment at
will. These rules are actually theorems of the given type systems; properly stated, they give us the existence
of aderivation for the conclusion from a derivation of the premise. These theorems are established by induc-
tion over the structure of type derivations. We omit the details, but we note for example that for Weaken the
axiom Var formstheinteresting base case, and that the induction steps typically work because weakened type
assumptions on the subterms are just carried through from the premises to the conclusions of therules.

The safety of theHindley/Milner type system rests on the assumption that the primitivefunctionsdo not go
wrong on arguments of the correct type: thismeansthat when they terminate, they really do produce asresults
terms having the typesimplied by their declarations. In our cal culus, which has multistep &-rules, we actualy
need the stronger assumption that every &-rewriting preserves types; thisis a condition on the the constant




100

terms N; and so forth that appear in the definitions of primitive functions. The proof of soundnessis essen-
tially an induction on reductions showing that well-typed terms not only contain no applications of primitive
functions to expressions of inappropriate type but also can never produce such an application by reduction.
The key component of this proof is the proof of subject reduction, the property that any type derivable for a
termisalso derivablefor any of itsreducts. The contrapositivestatement of thisproperty isthat theantecedent
of anill-typed term must also have been ill-typed; thereis therefore no way to arrive at an ill-typed primitive
application from awell-typed starting term.

A key part of a proof of subject reduction, in turn, is a substitutivity lemma establishing that the B-rule
preserveswell-typing. Inthebasi c functional programminglanguagewith only the - and &-rules thisisalmost
thewhol e of subject reduction, but in the treatment of our extended cal culi to follow we have many additional
cases to consider.

One further aspect of the Hindley/Milner type system is noteworthy for the developments in this chap-
ter: it worksequally well for call-by-name and call-by-value versions of the underlying lambda-calculus. In-
formally, this property may be understood as deriving from the fact that the type system infers the possible
conseguences of an application based on approximate information that does not capture the time of reduction.
Formally, the soundnessresult for the call-by-name cal culusis aconsequence of soundessfor call-by-valueby
the following reasoning: Every call-by-value -redex is aso acall-by-name [3-redex, therefore a stuck term
in the call-by-name calculus is a so stuck in the call-by-value cal culus. The type system is sound for call-by-
value, therefore the term in question must be ill-typed, a property that is independent of the eval uation order
of the calculus. Thus a stuck call-by-name term isill-typed. This establishes soundness for the call-by-name
caculus. Thisform of reasoning depends on establishing the subject-reduction property for both calculi.

6.2 What should atypesystem for alambda-calculuswith assgnments do?

The assignment constructsthat we have added to the basi ¢ lambda-cal cul us present several new challengesfor
atypesystem. The most important of these, and the most complex to address, isto assurethat the purification
of the result of a store-computation never becomes stuck. Encountering a stuck purification in the calculus
corresponds informally to an attempt to export observation of a store outsideitslifetime; only terms that can
be interpreted independently of a particular store can be purified in the calculus.t

Besides assuring that purification of well-typed terms aways proceeds to completion, atype system for
lambda-cal culi with assignment can al so ease a couple of lessimportant nuisances present in the untyped cal-
culi. Asdiscussed in Chapter 2, the untyped ca culi cannot enforce arequirement that store-variablesinvolved
in a particular store-computation are local to that computation. This shortcoming prevents us from interpret-
ing the name of a store-variable as a particular location in which avalue is stored because it only becomes
mesaningful to speak of alocation with respect to a particular store. If non-local names can be used to access
a store, the interpretation of such aname must be associated with the point of use, not the point of definition.

A type system typically performs a static analysis that approximates a dynamic behavior of aprogram. In
the basic Hindley-Milner type system, this analysis tracks which types of values might be supplied to prim-
itives through all the twists and turns of lambda-abstractions and applications; a type system for a lambda-
calculus with assignment ought correspondingly to track locality of declaration for uses of store-variables.
We will see below that thisanalysis can be carried out in a straightforward fashion.

With atype system to enforce that only locally-declared store-variables affect a store-computation, it is
possibleto restore our originally-intended semantics identifying store-variables with locations. now thereis
only one store relevant for the interpretation of such names.

6.3 The Chen/Odersky type system for A[3d!eag] and A[d!laz]

The type system of Chen and Odersky (given both in [Chen and Odersky, 1993] and in [Chen and Odersky,
1994]) was proposed to provideasound typing mechanism for Ay , the predecessor of A[Bd!leag]. Many of the

1But not nearly all such independently-meaningful terms can be purified in \B5!eag] and NBd!laz]. The language-feature design
proposed by Launchbury and Peyton Jones [Launchbury and Peyton Jones, 1994] allows far more such terms than our present calculi;
we discussthe difficulties of modeling their proposal as alambda-calculuswith assignment in Section 6.5.
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Figure 6.6: Syntax of typesfor Chen/Odersky type system for A[3d!eag]
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Figure 6.7: Chen/Odersky type system for A[3d!eag]

features of the Chen/Odersky system derive from the work of Swarup, Reddy, and Ireland on the Imperative
Lambda Calculus[Swarup et al., 1991]. The Chen/Odersky type system, however, shareswith the Imperative
Lambda Cal culus afundamenta flaw in its proof of type safety. Weintroduce the Chen/Odersky system here
both in order to point out its flaw before fixing it and aso because some of its structure will be used in the
repaired type system given in Section 6.4.

The Hindley/Milner type system guarantees that well-typed functional programs do not get stuck because
of mismatches between an expression’stype and the type required by its context of use. A type system for
a lambda-cal culus with assignment should have a similar property with respect to the added features. com-
mands, store-variables, and purification. There are two issues at work here. First, since the sequencing con-
struct & of A[Bo!eag] and A[3d!1az] passes acommand result to the next command, the type system must dupli-
cate the services it aready providesfor function application in the context of command sequencing. Second
(and more difficult), the type system must ensure the safety of pure-expressions. In order to accomplish this,
the Chen/Odersky type system introduces new type constructors Ref and Cmd to distinguishreference types
and command types, respectively, from al other types.

The type system attempts to guarantee the safety of purification by requiring that a pure-expression can
only be type-correct if the type environment assumes only functional (non-Ref , non-Cmd) types for free
variables in the purified expression. This requirement is expressed by stratifying the collection of types so
that purely applicative types can be distinguished syntactically from types involving imperative constructs.
The type system makes use of thissyntactic distinction by limiting the type of imperative computation results
to the applicative layer.? Although the particular use of this stratification by the Chen/Odersky type system

2The application of the stratification techniqueto lambda-calculi with assignment derives from [Swarup et al., 1991].
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isinsufficient to achieveitsgoa of assuring the safety of attempted purifications, the basic stratified structure
works and isretained in the type system LPJ~which we will introduce in Section 6.4.

The syntax of typeexpressionsin the Chen/Odersky systemisgivenin Figure 6.6, and theadditional typing
rulesare givenin Figure 6.7.

Several features of thistype system require special comment. Firgt, it is assumed that there are no con-
stants of reference or command type, nor are there primitive functionsinvolving such types (except perhaps
as proj ectionsfrom constructed types). Second, thetypesin Figure6.6 incorporatea special class of typevari-
ables that are only capable of being instantiated by typesin the applicative layer. Corresponding to thisclass
of type variables are specia versions of the typing rules Gen and Spec. Third, the rule Pure requires that the
typesassumed for every variablein the typeenvironment berestricted to the applicativelayer. Thisrestriction
is notated by annotating the meta-symbol for type environmentswith a subscript T. Rule Pure aso requires
that the result type of the command be an applicative type. The side condition M = S#[} N] on rule Pureis
intended by Chen and Odersky to assure that the pur e-expression returns some value.® It should be noted that
the restriction in question is very easily satisfied by writing pureM X - X instead of pureM if M does not
have the required form; it is not clear that the restriction isreally required, but it is certainly harmless.

Itisinfact theformulation of the rule Purethat tripsup the Chen/Odersky type system. Aswe discussedin
Section 6.1, the property of subject reduction isacrucia step in establishing the soundness of atype system
according to standard proof techniques; it is subject reduction that fails for the Chen/Odersky system. The
culpritinthisfailureistherestriction in the rule Pure, which requires a type environment that assumesonly 1
types. Unfortunately, theset of free variabl esthat must be assigned in such an environment i ssubject to change
upon substitution during a B-reduction. Thisissue can betraced as far back as the work of Reynolds on the
syntactic control of interference [Reynolds, 1978], as pointed out in the introductory sections of [O’Hearn
et al., 1995].

The following counterexampl e to the Chen/Odersky issimilar to those given in theliterature on syntactic
control of interference; we have adapted it to the syntax of A[3d!eag]. We consider the term

purevwww:=2; T ((Ax.puretx) e (fste (1 w))),

which can be given atype derivation as follows. We present first a subtree of the type derivation in consid-
eration of our limited page width. This subtreeis presented for compl eteness only; the interesting part of the
derivation follows afterwards.

Ffst: Vo.¥B.{a,B) — o
w: Ref Int,z: () - fst: (Int,Ref Int) — Int  w: Ref Int,z: () F(L,w) : {Int,Ref Int)
w: Ref Int,z: () - fste (1,w): Int , (6.1)

Theinteresting part of the type derivationisthe following:

X: Intt= x: Int
X: Intk1x: CmdInt

X: IntF puretx: Int
w: Ref Int,z: () - Ax.puretx: Int— Int  (6.1)
w: Ref Int,z: () - (AX.puretx) e (fste (1,w))): Int
w: Ref IntFw:=2:Cmd() w:Ref Int,z: () F1((Ax.puretx)e (fste (1 w))): Cmdlint
w: Ref Intk w:=2; 1 ((Ax.puretx) e (fste (L w))): CmdInt
Fw.w:=2; 1 ((Ax.puretx)e (fste (1 w))): CmdInt
F purevww:=2; 1 ((AX.puretx) e (fste (1,w))): Int

3The definition of S%[] isgivenin Figure 2.11. It is used here as ahandy syntactic abbreviation—itsrolein the statement of the rule
has nothing to do with laziness.
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Notethat theinner pure-expressionisjudged typablein atype environment containing atypeassignment only
for the free lambda-bound variable x. The assumption isthat x has type Int, which is an applicative type, so
the side condition is satisfied.

Now let us carry out the B-reduction, obtaining the term

purewv.w:=2; tpuret (fste (1,w)).

If wetry to construct atype derivation for thisterm, werun into trouble: the inner pur e-expression now con-
tainsafree occurrence of the store-variablew, which must be accounted for inthe type environment present in
the application of rule Pure. The side conditionwill thus be violated, since thetype of w is constrained by its
originin the outer pure to have type Ref Int. The B-reduction step has caused aloss of typability, and hence
subject reduction does not hold for the Chen/Odersky type system.

The rather fussy subterm fste (1,w) appearing in this counterexample may appear puzzling, but this con-
structionisnecessary in order to pin the blame on the side conditionrather than on the conditionthat the result
type of the pure-expression belongs to the applicative layer. Putting the offending store-variableinto theig-
nored d ot of a projection from a product type runs afoul of the side condition (because all free variables must
be assigned types in the type environment, and hence must be assigned applicative types) but satisfies the
result-type condition (because the type of wis, in fact, ignored).

This counterexample to subject reduction actually only invalidates a proof technique for type soundness;
its existence does not necessarily disprove type soundness itself. In fact, the counterexample given reduces
successfully to the answer 1. When a proof technique fails without suggesting that the theorem itself isfalse,
weare faced with a choi ce between finding another proof techniquefor establishing the same theorem or mod-
ifying the theorem. In our repair of the situationin Section 6.4 we will modify the theorem by considering a
different type system that is not sensitive to the changes in free-variabl e sets that come with substitution. We
rationalize that subject reduction ismore than just a proof technique—itisintimately tied to our informal un-
derstanding that a program denotes a value and that that value has an unchanging type.

Uninitialized store-variables

One technical detail of [Chen and Odersky, 1994] that we will treat differently here has to do with the way
in which errors due to uninitialized store-variable are dealt with. Chen and Odersky introduce a reduction
w.Vv?eX-P — wv?eX-P in order to make such terms diverge rather than get stuck, since the type system
does not, in fact, prohibit them. Asamatter of taste, we choose instead to stipulatethat all store-variablesare
initialized immediately upon declaration (as in w.v:= M; P), and that the check for this restriction is made
independently of the type system (perhaps by modifying the syntax of the language).

Thissolutionto theunitialized-variableproblem creates aminor secondary problem: theoriginal reduction
rulesin Figures 2.7 and 2.9 allow the creation of intermediate forms that do not satisfy our stipulationthat all
allocated store-variables be immediately initialized. In particular, the rule bubble-assign can bubble a store-
variable read into the position between the alocation and the initialization, as in the reduction

W.V.= Mg, W2 XMy — WW?bX Vi= Mg, My
—  W?>Xo-W.Vi.= Myq; Mo.

The way out of thisminor dilemmaisto notethat, if thefirst reduction above is permitted by virtue of v and
w being distinct store-variables, then so is the second. In fact, a standard reduction will perform these re-
ductions consecutively or not at all, so the conditionthat the declaration of a store-variable must be followed
immediately by an initial assignment to it is aready maintained by the reduction semantics.

Another minor issuearising fromour insistencethat store-variablesbeimmediately initializedisthat buil d-
ing certain recursive store structures becomes awkward. For example, it is perfectly reasonablein an untyped
calculusto set up two store variabl es having each other as assigned values, asin

WVWV. =W, W.=V.

It should be noted, however, that this term can have no finite type, because the reference type of each of v
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Figure 6.8: Syntax of typesfor LPJ

and w is defined in terms of the other without any foundation to the inference. The type of each of v and w
must thus be a solution T to the equation T = Ref Ref 1. Although it is possible to devise reasonable type
systemswhich can express and infer such types (asis done, for example, in [Amadio and Cardelli, 1991]), we
do not wish to become involved in thisadditional complexity when our main purposeisto account for pure.
In the presence of constructed typesit is possible to achieve the desired effect of the example just given by
interposing constructed values into the circle of references. For example, the type of nodesin the classic data
structureof doubly-linkedlists (whichinherently requirescircular memory structures) isnaturally represented
by a union of two constructed types: onefor nil and onefor areference to the nodes fore and &ft.

A reasonableway to mitigatethissituationisto introduceinto the cal culus aconstruct permitting the decla-
ration of several mutually-recursive store-variablesat once asin Haskell’ slet or Scheme’sletrec. The mutual
recursion would apply to theinitializing expressions, which would beinterpreted in an environment in which
all the simultaneously-declared store-variableswere already defined. We do not pursue thismatter any further
here because the language |oses no essential expressivity by the omission; indeed, ILC also lacks such a con-
struct. Thisdiscussion of store-variableinitializationapplies equally to the type system LPJ™ to be presented
in the next section.

6.4 Thetypesystem LPJ™ for A[fdleag] and A[3d!laz]

Aswe saw in Section 6.3, the approach to typing purification expressions by confining assumed typesfor free
variables of the store computation to the applicativelayer has a serious flaw. In thissection we propose anew
typesystem for lambda-cal culi with assignment that isfree of thisflaw, and we proveit safe for both A[38! eag]
and A[Bo!laz].

Our new type system is arestriction of one proposed by Launchbury and Peyton Jones [Launchbury and
Peyton Jones, 1994]; wewill refer to their system as LPJ. The main feature of LPJ isthat theimperativetypes
depend on an additional type parameter that identifies the particular thread of store-computation in which a
store-variableor command isvalid. Thetyping rulesfor command sequencesforce an entirestore-computation
expression to have an identical value for thistype parameter; unique values for the type parameter for each
thread are generated at pure boundaries by requiring the type of the thread to be generic in the thread type
parameter. Our proposed type system, which we will call LPJ™, restricts the LPJ purification rule, but only
in the result typerather than in the assumed types which proved so troublesome for the Chen/Odersky system
and for ILC.

In order to give an uncluttered view of the design principlesinvolved, wefirst present the full LPJ system,
after which we givethe modificationrequired to yield LPJ~ followed by the proof of type soundnessfor LPJ~.
Figures 6.8 and 6.9 present the type system LPJ. Figure 6.9 gives only the inference rules peculiar to the
command and assignment constructs of the calculi; the type rules for the functiona core of the calculus are
retained from Figure 6.4.

The central technique of LPJ isadapted from theway inwhich higher-order polymorphiclambda-calculus
[Girard, 1990] encodes existentially-quantifiedtypesas universally-quantifiedtypes (see[Girard et al ., 1989]).
The Launchbury/Peyton Jones type system uses thistechnique to require that the argument to pur e be generic
in the type associated with the store. At thetechnical level in the type system, this requirement has the effect
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Figure 6.9: Typeinference rulesfor LPJ

of requiring that the type variabl e be absent from the type of the returned value of thepure. Since occurrences
of thetype variable correspond to occurrences of the store, the purified value must be free of references to that
particular thread. This device goes beyond the level of polymorphism present in the Hindley/Milner, since it
effectively givesthe pure operator the type scheme VB.(Yo.a Cmd ) — 3, which does not have dll itsquan-
tifiers at the outermost level, but Launchbury and Peyton Jones argue that the negative consequences of this
minor foray into second-order polymorphism are minimal.

Figure 6.8 givesthe syntax of LPJ type expressions. There are two major contrasts to the Chen/Odersky
system to be noted. First, thereisonly one stratum and one kind of typevariable. Second, theimperativetype
constructors take an extra parameter, which we write before the keyword asin 8; Ref 8, and 8, Cmd 6,.*
This extra parameter is the unique type of the store thread in which the reference or command isvalid; in
expressions of applicative typeit will awaysbe atypevariable.

Thetyperulesof LPJ aregivenin Figure6.9. Theserulesall follow the same pattern as the corresponding
Chen/Odersky rules, withtwo exceptions. First, the rulesfor typing compound commands carry a ongthe new
store-thread typesand requirethat they match. Second, the purification rule Pureimplementsthetrick aluded
toabove: acommand can only be purified if itstypeis genericinthe store-thread typethat must be matched by
every component of thecommand. Notethat thisdoes not prohibit the presence of adifferent store-thread type
as a component of the result type 1 as the Chen/Odersky system would. Thisleniency isamajor contribution
of the Launchbury/Peyton Jones type system.

Unfortunately,itisprecisely thisleniency that prohibitsusfrom using LPJ asasubstitutefor the Chen/Oder-
sky system. Our untyped calculi do not under any circumstances permit a command or store-variable to be
the result of a store-computation, so LPJ is necessarily unsound for A[Bd!eag] and A[Bd!laz]. Weclearly need
to restrict the LPJ rule Pure so that these types of constructs will never be considered for purification.®

Our solution is to construct a hybrid of LPJ with the stratified type structure characteristic of ILC and
the Chen/Odersky type system. Figure 6.10 gives the syntax of types for the hybrid type system LPJ™. The
applicativetypes are denoted by T, the more genera typesincluding the store-variable and command typesby
0, and a specia class of types specific to the purification rule by Y. The s types are exactly the types of the
congtructsthat can be completely purified by the reduction rules pure-eager and pure-lazy; the modified Pure
rulegiven in Figure 6.11 restrictsthe typeinferred for the result of the command sequence to be purified to Y
types. Asidefrom thisrestriction, LPJ™ isjust LPJ.

The safety provided by LPJ™ isamatter for the proofsto follow, but we first note that the problem raised
by the counterexample given in Section 6.3 is not present, because we have no condition on the free variables
of the store-computation’ sresult expression, but only on itstype (which must bea () type). We have taken ad-
vantage of an informal parametricity property of our typesystem: thetype of an input that actually contributes

4We adopt this infix notation (which is ours) in order to reduce the need for parentheses that arise with the use of the usual style of
prefix placement of the type constructor. We cite the function-type constructor as a precedent.

51t is certainly possible to attempt to allow the LPJ type system’s attractive leniency to influence the design of an untyped lambda-
calculus with assignment with respect to which LPJ can be proved sound. We report on difficulties with this attempt in Section 6.5.
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Figure6.12: Additional rulesfor LPJ™

to the output must be reflected in the output type.

We now begin the proof that LPJ™ is safe for A[Bd!eag] and A[Bo!laz]. We first prove the substitutiv-
ity lemma that supports the B-reduction case in the proof of subject reduction. We formulate the lemma in
terms of type schemes both because it makes a better induction hypothesis and because we need to take let-
polymorphism into account.

Lemma6.4.1 (Substitutivity) InLPJ™,if,x: o1 F My:0p and T = My: 01, thenT F [My/X] My : Op.

Proof: Wecarry out aninductiononthestructureof thetypederivationfor thehypothesisedjudgment I, x: o1 -
M1:0o.

The only interesting base case isM1 = x, inwhich case [M /X] M; = M and the lemma followsfrom the
hypothesisI” - Mz: 01. Inadl theother basecases (M =v, M1 =yZ£ X, M = f, M1 = ) thelemmaiseasily
seen to hold: no subgtitution actually takes place. In these cases there is no occurrence of x in M;, and the
desired conclusion followsfrom the hypotheses by omitting theirrel evant type assignment for x fromthetype
judgment.

Wetake asinduction hypothesi sthe statement of the lemma, but withM; restricted to terms of lower height
than the term under consideration.

Case (1) Rule App: M1 =N e N\,.
In this case the assumed typing for My must be supported by an inference tree of the form
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MX:00FN:B3—6 MX:o0FN:B
[X:00FNeN: 6,
The assumptions that we are forced to make in this type derivation, aong with the induction hy-
pothesis, are sufficient to establish '+ [Ma /XNy : 683 — 6, and T - [M2/X] Np 1 6,. We use these

type judgmentsas assumptionsin thefollowing type derivation, which establishesthelemmain this
case:

FrEM2/XINL:B3 =6 THEM/XN: 6,
FEM2/XINL o M2 /XN (= M2 /XN, o Nb) 2 65,

Rule Abs: M1 = Ay.N.
In this case we must have atype derivation of the form

I,X:01,y: 63 N: 6y
I x:01 FAY.N: (83 = 64)(= 6,).

The assumption of this derivation together with the induction hypothesisthen gives the assumption
of the following type derivation, which establishesthe lemmain thiscase. The only twist isthat we
have used the fact that the type assignments within type environments may be permuted:

Iy: 03+ [M2/X]N: 6y
T Ay [M2/X N(= [M2/x] (Ay.N)): (83 — 64)(= 62).
This pattern of proof requires only the fact that substitution commutes with term-construction. The

rest of the cases based on type rulesfor syntactic constructsfollow this pattern; we treat the case for
rule Pure in full because of the presence of the condition on the result type.

Rule Gen:
In this case, we have a type derivation of the form

x:o01+M1:0o
[ x: 01 M;p:Va.o,

(a g fvl,x: o1)

The induction hypothesis(recall that the induction is over the structure of type derivations, not that
of terms) gives us the existence of a derivation of the judgment I' - [M2/X] M1: 0. Now if the
typevariablea isnot free in the type environment I', X: 07, it certainly cannot befreein the strictly
smaller type environment I'. Hence the side condition for rule Gen is satisfied, and we can infer
I+ My :Va.o, by rule Gen.

Rule Spec:
In this case the root node of our given type derivation takes the form

Ix:01FM:Vo.o3

(a ¢ fvés)
Ix: 01+ M:[B3/a] 03(= 02)

Using the assumption of this type derivation, the induction hypothesis gives us the judgment I" -
[M2/X] M: ¥Ya.o3, from which the desired conclusion T + [M2 /x| M: [B83 /a] a3 follows by typerule
Foec (the side condition having al ready been established by thefact that it must a ready holdfor Spec
to have been applied in thefirst place).
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bns((]) = {}
bns(Mex-S%[]) = bns(S2[]) U{x}
bns(w.SZ[]) = bns(S2[]) U{v}

Figure 6.13: Bound variables of a store-context

Case (5) Rules Gen' and Spec’.

The proofsfor these cases are similar to those for their counterparts Gen and Spec.
Case (6) RuleLet: My =lety=N; in N.

In this case, we have a type derivation of the form

Mx:oFNp:d Mxio,y:0 N6
Fx:okFleay=NinN,: 6

Applying theinduction hypothesis to the assumptions of this derivation, we obtain the assumptions
of the type derivation

FEM/XINL:d Ty:d F[Ma/XIN,: 6,
MFlety = M2/ Ny in M2/x] No (= M2/X] (et y = Ny in Ny)) - 6.

Case (7) RulePure: My = pureS¥[t NI.
In this case we must have atype derivation of the form

Ir,x: op F S¥ N]: Va.a Cmd @
r,x: o - pureS#[t N: g(= 6).

Using the induction hypothesiswith the assumption of this type derivation gives us the assumption
of the following type derivation, which establishes this case:

I+ [Mz/x] St N]: Ya.a Cmd
[+ pure[M, /X %1 N](= [Ma/x] pureS@[t N]) : y(= 6).

Having considered al the typing rules, we have now established thelemma. i

In additionto the substitutivity lemma, the proof of subject reduction for LPJ™also requiresthefollowing
lemma on the typing of command sequences. The lemma uses the inductive definition of bns(S#[]) givenin
Figure6.13 (‘bns()’ isan abbreviation for ‘bound names’).

Lemma 6.4.2 (Typing command sequences) InA[3d!eag] and A[Bd!laz] with the LPJ~type system, the type
judgment I - S#[} M]: aCmd 8 holdsif and onlyif thejudgment '+ - M: 8 holds, where ™" extends ™ with
type assignments for the variables and store-variablesin bns(S%[]).

Proof: We carry out an induction on the structure of S%].
The base case, in which S¥[] =[], is established by the instance of the typing rule Unit:

r-M:0
M-+M:aCmdB6.
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That thisinference aso works in the reverse direction isimplied by the fact that thisisthe only typing rule
that infers anon-schematic type for aterm of theform M.

We now treat the two inductive cases. If §%[] = M;>x-S¥[], the relevant type inference is an instance
of therule Seg:

F-Mp:aCmd®6;, I,x: 8 F SP[tM]:aCmd8
r=Mex-S#[]:aCmd8

If we are given the right-hand assumption of thisinference by means of the induction hypothesis, the conclu-
sion linefollows and establishesthe“if” direction of the lemmain this case, sincethe typeenvironment I is
augmented by atype assignment for the variable x that is added when going from bns(S#([]) to bns(S(]).
Conversdly, if we are given the conclusion line, the fact that we have only one typing rule for terms of the
given form impliesthe existence of derivationsfor the assumptions. Applyingtheinduction hypothesistothe
right-hand assumption givesI'; - M: 6, where ", extends ™, x: 8; with type assignmentsfor al the namesin
bns(S[]). But thislast statement is equivalent to saying that 'y extends ™ with type assignments for al the
namesin My >x-S2[], which iswhat we have to show.

The induction case in which 3%[] = w.S¥[] follows by similar reasoning modulo use of the inference
rule New instead of Seq.

We now state and prove the subject reduction property for LPJ™.

Lemma 6.4.3 (Subject reduction) In A[Bdleag] and A[Bd!laz] under the type system LPJ~, if [ = M: 6 and
M — N, thenT - N: 6.

Proof: Beforewe get to theheart of the proof, there area couple of reasoning principlesto notein preparation.

First, it is sufficient to consider only the cases in which M is aredex. We notethat (1) every subtree of a
validtypederivationisavalid type derivation and (2) the typing rulefor each syntactic construct depends on
atypejudgment for each of that construct’ ssubterms. Thusif we are given avalid type derivation for aterm
containing a deeply embedded redex, there will exist some subtree of that type derivation that establishes a
typefor the redex.

Second, we need to account for theinteraction of the generalization and specialization ruleswith our proof
technique. For each redex, we start with the hypothesisthat there existsavalid type derivation for that redex.
We then observe that the syntax-directed typing rule for the root syntactic construct of the redex requires that
certain judgments concerning subterms of the redex must bevalid; finally, we use these judgmentsto construct
avalid type derivation for the reduct.

Itispossible, however, that there may be morethan onevalidtypederivationfor thetermin question, since
the rules Spec and Gen rel ate judgments concerning the same term in the premise and conclusion. There may
thus be some intervening applications of these polymorphism-related rules between the root of the derivation
tree and the first application of the syntactically required typing rule. Nonetheless, it should be clear from
inspection of thetyping rulesthat every type derivation for aterm must contain a uniqueinstance of a syntax-
directed typing that is closest to theroot of the derivation. It isto this closest syntax-directed rule application
that we are referring in the rest of the proof when we say that a type derivation must have a certain form.
Furthermore, since specializations and generdizations only depend on the type environment and adjudged
type (and not on the typed term) it is possible to reapply them after proving that a redex and its reduct have
thesame type. Thisreasoning lets us complete the round trip from the origina type derivationfor the redex to
the trimmed type derivation with a syntax-directed rule at the root to a trimmed type derivation for the reduct
and finally back to afull derivation for the reduct having the origina type.

We consider one case for each reduction rulein A[3d!eag] and A[Bo!laz].

Case (1) Rulef: (Ax.M1) eM> — [M3/X] M3.

A [(redex must have atype derivation of the form



110

Case (2)

Case (3)

Case (4)

Case (5)

MX:6,FMq:6
FI—)\XM161—>62 FI—MZ:Gl
M (AX.M1)eMy: 6,

The assumptions we are forced to make if we assume the existence of this type derivation are ex-
actly the hypotheses of the substitution lemma (Lemma 6.4.1), which alows us to conclude that
I+ [M2/x] M1 : 6;, which isthe required judgment concerning the type of the reduct.

Rule d.

This case is covered by our assumptions concerning the types of primitives defined in the calculus.
Rule assoc: (Ml > Xo ~M2) >X3 M3z — M1>Xo Mo X3 -M3.

A typederivation for an assoc-redex must have the form

F'EMp:aCmd8; IMX%:6,FMy:aCmd6,
MEMieX Mo aCmd 6, [,X3:6, FM3:aCmd 65
FMi>X - Mo>X3-Ms: aCmd 63

The judgment I, x3: 6, - M3: aCmd 6; can be weakened to ', %, : 6;,%3: 6 - M3: aCmd 63; the
variablex, cannot occur freein M3 because M3 isoutsidethe scope of x, intheredex, and we observe
Barendregt’s convention that bound and free variables have distinct names. We can thus use the
assumptions of the type derivation above to establish the following type derivation for the reduct:

M%:0FMy:aCmd8, [,%:01,X3:6,Msz:aCmd6;
M =Mp:a0Cmd 6, [ X : 01 F MysX3-M3: aCmd 63
M'FMieX -MoX3-Mz:aCmd 63

Rule unit: tMp>Xx-Mz — Mg /X] Ma.
A typederivation for the redex hasthe form

MM 6 agive,
r-tM;:aCmde, = agfvl rx:6;-My:aCmd6,
M=1Miex-Mo:aCmd6,

The assumptions of this type derivation match the hypotheses of Lemma 6.4.1, so we can infer the
judgment I = [M1/X] M2: aCmd 6, for the reduct, which iswhat is required.

Ruleextend: (W.M7)>X-Mz — W.Mp>X-Ma.

A vaidtype derivation for an extend-redex takesthe form

I,v:oRef BgFMyp:aCmd 6,
F'FwMi:aCmd 6 I,X:6,FMy:aCmd6,
It (wMjp)ex-Mz:aCmd 6,

The assumptions of this type derivation (modulo some weakening to make them fit the inference
rules) give us the assumptions of the following type derivation for the reduct:

Fv:oRef GgFMi:aCmd6, I,v:aRef 6y,x:6; FMy:aCmd6,
Iv:aRef B F Mi>X-My:aCmd 6,
Mr=wMiesxMy:aCmd6,




Case (6)

Case (7)

Case (8)
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Ruleassign-result: v:i=Mji>X My, X € fv M.
A valid type derivation for the redex in this case takes the form

MrFvi=Mi:aCmd() I,x:()FMz:aCmd6,
Mrkv:i=Miesx-My:aCmd6,

Taking into account the global typeassignment () : () and theassumption,x: () F M2: aCmd 6;,
the substitutionlemmallets us conclude T + [( ) /X] M2: aCmd 6,. We use thisjudgment aong with
the other assumption to construct the following valid type derivation for the reduct:

MrEvi=Mp:aCmd() T,z: () F[()/XMz:aCmd 6,
MEv:i=My; [() /X M2:aCmd 6, ,

where z is a variable resulting from the expansion of the abbreviation “;”, and we have weakened
the judgment given to us by the substitution lemma.

Rulefuse: vi=Mg; v?oX-My — vi=Mjy; [M1/X] Ma.

A typederivation for the redex takesthe form

Iz: () Fv:aRef &
FrFv:oRef B8y MTFM1:6g TMz:()Fv2:aCmd& TI,z:(),X:68FMy:aCmd6,
Mv:=Mp:aCmd /() Iz () Fv?2ex-Mp:aCmd6,
MEv:i=Mg; v?2ex-My:aCmd 6, ,

where the variable z arises from the expansion of the syntactic abbreviation“;” and occurs nowhere
except its binding occurrence.

With asuitable weakening of the assumptionsgiven by the above type derivation we can establish a
type derivation for the reduct in two steps. First, the assumptions T, z: () F M : 8y (note the weak-
ened typejudgment) and I, z: (),x: 6y - M2: aCmd 6, match the hypotheses of Lemma 6.4.1, so
wecaninfer,z: () - [My/X] Mz: aCmd 6,. Second and finally, we now have enough assumptions
to construct the following type derivafor the reduct:

Mrcvi=Mi:aCmd() I,z: () F[M1/XMz:aCmd 6,
I v:=Mz; [M1/X] M2: aCmd 6,

Rulebubble-assign: v:i=Mj; W?>X-My — W?eXV:= My; My
A typederivation for thisform of redex takes the form

Iz () -w:oRef 6
FrFv:iaRef 8y TFM:6 TNz ()Fw2aCmd® T,z:(),x: 6 FMy:aCmd6,
M-v:=Mp:aCmd () rz: () Fw?ex-My:aCmd 6,
MEv:i=Mg; w?ex-Ms:aCmd 6,

The assumptions of the above derivation allow us to establish the following type derivation for the
reduct. We can |egitimately drop type assignments concerning the variable z from the type environ-
ment because it occurs nowhere except its binding occurrence; we a so weaken some typejudgments
to match the typeinferencerules:
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FXx:6Fv:oRef 8 I,x: 6 FM;i:6
w:aRef 6, Mx: 6 Fv:=Mp:aCmd () rz:(),x: 6, FMz:aCmd6,
MEw?: aCmd6; IX:6,Fv:=Mp; My:aCmd 6,
MEw?exv:=Mq; My:aCmd 6,

Case (9) Rulebubble-new: ww?>-x-M — wW?>X-WM.
Type derivationsfor thisform of redex take theform

Iv: aRef By Fw: aRef 6;
IFv:aRef g Fw?:aCmd8; TI,v: aRef 65,x: 6, FM:aCmd 6
Iv:aRef 6 Fw?ex-M:aCmd 6,
M=ww?e-x-M:aCmd 6,

Beforewe usethe assumptions of thistype derivationto derive the sametypefor the reduct, we must
observethat thejudgment I, v: aRef 6, -w: aRef 6; actualy impliesthejudgmentl” -w: aRef 6, :
since v and w are distinct store-variables when this reduction rule applies, the first judgment could
only hold if I" dready holds atype assignment for w. We can now proceed in the usua way:

Frw:aRef 6, TI,x:6,,v:aRef 6 -M:aCmd6,
MEw?:aCmd6; Mx:6,FwM:aCmdB6,
MNkw?exvwM:aCmd6,

Case (10) Rulepure-eager: pureS*9[t (AX.M)] — Ax.pureS@9[t M].
A typederivation for such aredex must have theform

M-S (Ax.M)]:aCmd (68 = )
ISt (AX.M)]: Yo.a Cmd (8 — )
I pureS?9[t AX.M)]: 06—

(agfvl)

Using the assumption of thistype derivation, Lemma 6.4.2 tells us that the judgment
rMEMXM:0—

holdsfor sometypeenvironment 't that extendsI™ with typeassignmentsfor al thenamesin bns(S9[]).
Lemma 6.4.2 appliesbecause every eager store-context S*9[] isaso alazy store-context. Thisjudg-
ment, in turn, must arise from an application of the typing rule Abs under the assumption I+ ,x: 8+

M: . With thisjudgment in hand, we reverse the direction of reasoning (noting that the type envi-
ronment M+ x: 8 can aso be thought of as being an extension (I, x: 8)* of I',x: B with typeassign-
ments for al the names in bns(S*™9[]). In thisway we obtain the following type derivation for the
reduct:

x: 0" FM:
rx:0F S M]:aCmd y
rx:0F S M]: Ya.aCmd Y
I,x: 0+ pureS™9[t M]: g
MEMX.pureS2[MTM]:0— g

(Lemma 6.4.2)

(a ¢ fvl,x: 0)

The cases of the other two forms of pure-eager-redex are proved similarly.
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Ak = V| f | MM | c"eMie---eM, (k<n) | v?>xM | O
Ook V? | Vi=Axk | TAxk | WVi=M; Og | Vi=M; O

Figure 6.14: The language Ao of hon-stuck normal forms

Case (11) Rulepure-lazy: pureS¥t (Ax.M)] — Ax.pureS¥[{ M.
The proof of thiscase isidentical to that for the pure-eager.
Case (12) Rulelet: let x=M;inMy — [M1/X] Ma.
In this case, atype derivation must take the form

rEMp:0 Mx:oFMs:0
MN-legx=M1inM;: 0

By Lemma6.4.1, the assumptionsof thisderivation suffice to establishthejudgment I - [M1 /X] M5 : 6,
which isthe typing we desire for the reduct.

Since we have established the property of subject reduction for each of the possible forms of redex in LPJ™,
Lemma 6.4.3 isnow proved. i

We now face thetask of provingthat the type system LPJ™ issafe for the calculi A[3dleag] and A[Bd!laz].
In order to state this result precisely we formalize the requirements for type safety stated in Section 6.2. As
discussed in that section, the primary responsibility of the type system isto ensure that certain stuck terms
(normal formsthat are not answer terms) cannot arise among the well-typed terms. If we can show this, then
we can deduce that no computation starting from a well-typed term can go wrong: Lemma 6.4.3 assures that
subsequent reducts of such aterm retain the same type, and thus no stuck term can ever arise.

Our proof isthat of [Chen and Odersky, 1994], adapted dightly to make use of LPJ~. Thisproof proceeds
by giving an inductively-defined language of non-stuck normal formsand proving that all the well-typed nor-
mal forms belong to this language. Figure 6.14 gives this language of non-stuck normal forms. The form
W.v:= M; By accounts for our convention that all store-variables areinitialized immediately after being de-
clared.

Lemma 6.4.4 (Well-typed normal forms) InA[38!eag] andA[Bd!laz] withtheLPJ~ typesystem,if '+ M: 6,
wherel’ = {v;: 01 Ref 01,... Vi 0m Ref B} and M isirreducible, then M € Ag.

Proof: We prove the lemma by induction on the structure the term M in the statement of the lemma. We
consider every possible syntactic construction of M and show that each is either reducible (and hence not a
subject of thelemma) or isin Ag.

Case(l) M=f,M=c",or M= Ax.Ms.
In al these cases the definition of Ak givesM € Ay directly.

Case(2) M=MpeMy.
Weconsider several cases based on thesyntactic form of M1. By theinductionhypothesis, My € Ag.
Furthermore, since M, iswell-typed and occurs applied to another term within the wel l-typed typed
M, it must be assigned a functiona type. Among the elements of Ay only those of the following
forms satisfy this requirement:

(a) M, = f.
Since we are assuming that primitives are typed as functions taking arguments of constructed
type or function type, theargument term M, must have a constructed type or function type. Fur-
thermore, the induction hypothesis demands that M, € Ag. Thus the only forms M, can take
inthiscase are f, \y.M5, or cC"e My, e --- My, , (k < n). All these possibilities make M into
a &redex (since we assume that primitives are total on their domains of definition). Since this
formfor M isnot irreducible, it is removed from consideration.
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Case (3)

Case (4)

Case (5)

Case (6)

Case (7)

Case (8)

Case (9)

(b) Mp=c"eMje---eM;, (k<n).
SinceM = My e M, iswell-typed, it remains so when we writeit out fully asc"e M) e --- e M, @
M,. Well-typing guaranteesthat k+ 1 < n, and hence the entiretermisin Ay as given directly
by the definition.

(C) M1 = )\XM&_

This case makes M a 3-redex, and it isthusremoved from consideration.
M=letx= Mlin Mo.
All let-expressions are redexes, so this case is removed from consideration.

M=wv.
Inthiscase, M € Ay directly from the definition.

M= Ml?.

Since M iswell-typed, M1 must have areference type. By the induction hypothesis, M1 € Ag. The
only form of termin A that can have areference typeisv, so M = v?, whichisin A by direct use
of the definition.

M= Mq1:=Mo.

By well-typedness, M; must have a reference type; by the induction hypothesis, M; € Ag. Thus
M1 =v,and M = v:= My, whichisin Ay by definition.

M= T M.

Inthiscase M € Ay directly from the definition.

M =w.v:=My; Ms.

By well-typednesswe have I',v: aRef 8+ M;: aRef 8 for somea, 6, and 6. By the induction
hypothesis, we aso know that M; € Ag. Wenow consider al the possible formsfor My satisfying
both these constraints:

(@ My =w?>x-M'. Inthiscase, M isreducible by rulefuse (if v= w) or bubble-assign (if v £ w),
and thusthis case is eliminated from consideration.
(b) M1 € Og. Inthiscase, M € A.

M= M1pX-Ms.

By the usua argument combining well-typedness (M; must have command type) with the member-
ship of the subtermsin Ay, we have only to consider the following cases for My

(a) M1 =v?e-x-M'. Thismakes M reducible by rule assoc, so this case isremoved from consider-
ation.

(b) M1 =1M;. Thismakes M reducible by rule unit, so this case is removed from consideration.

() M1 =w.Mj. ThismakesM reducibleby ruleextend, so thiscaseisremoved from consideration.

(d) My =v? Inthiscase, M € Ay.

(e M =v:=M]. If x € fvMjy, then M is reducible by rule assign-result, which would remove
this case from consideration. Assuming x ¢ fv M, we can abbreviate M = v:=M{; M,. Well-
typedness dictates that I',x: () = My: aCmd 6, for some o and 6. Since x ¢ fv M», we can

weaken thisjudgmentto I = M5 : aCmd 6, which lets us apply theinduction hypothesisto M.
We now have the following cases to consider:

(i) Mz =w?ry-M5. Thismakes M reducible either by rule fuse (if v = w) or bubble-assign
(if v w), thusremoving this case from consideration.

(i) My € G Inthiscase, M € Ao
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Case (10) M = pureS#[t M4].
Since M is wdll-typed, we must have

M+ S%[t My]: Va.a Cmd y,

which in turn requires
M+ S#[tMy]: aCmd y,

wherea ¢ fvIl. Our being forced to assume thisside condition hereis of crucial importance. Since
thetypeassignmentsin I are al of theformv: o Ref 8, a must be distinct from any thread param-
eter assumed for any v; assigned atypein ™. Thisinturnimpliesviathetyping rule Seq that no such
v; isdereferenced or assigned to along the spine of the command sequence S¥[].

Now the induction hypothesistells us that S#[ M1] € Ag. Since we aso know that
M+ S#[tMy]: aCmd y,

we can write down a set of productionsfor the possible forms of S¥[ M4] by selecting from Fig-
ure 6.14 those productionsthat have command type:

P = Vv2>xM | Ok
Ok = V? | vi=M | M (6.2
| WO | Vi=M; O.

Thefirst possiblesyntax in (6.2) isruled out by thefree occurrence of v, sincewe have just remarked
that there can be no such occurrence in S#[{ M4]. Nor can the forms v? or v:= M appear, both for
thereason just cited and because we requirethat acommand sequence that formsthe body of apure-
expression ends in an occurrence of 1 M. Inspecting the remaining possibilities, we see that we are
left with the exact productionsthat make up the definition of S29[] in Figure 2.11. Furthermore, all
the free names in M1 are bound within S¥[]; in fact, al such free names must be store-variables,
sincetheform v:=M; O abbreviates abinding for avariable that does not occur free in theinner
Ok -

We now examine the possible forms for the result expression M;. We know that it has a type of
the form ; it can therefore have no free occurrences of store-variables or commands. It isaso
true by the induction hypothesisthat M; € Aq. Surveying the definition of Agconce more, we see
that the only possible formsfor My are f, Ax.M/, and c"e Mj e --- « M, (k < n). But each one of
these possibilities, when combined with our knowledge from the previous paragraph that 3% =
S9[], makes M apure-eager-redex (thusafortiori apure-lazy-redex). Hence we can remove pure-
expressions from further consideration as possible normal forms absent from Ag.

Having now shown that al possibleterms M well-typed under the given form of type environment are either
reducible or members of Ay, we have now established Lemma 6.4.4. i

Our main theorem isarelatively simple corollary of Lemma 6.4.4:

Theorem 6.4.5 (Typesafety for LPJ™) InA[3d!leag] and A[3d!laz] with the LPJ™ type system, if - M: Ans,
where Ans is a type of answers, then any reduction sequence starting with M either diverges or terminatesin
an answer term Awith ~ A: Ans.

Proof: The types of answers are the constructed applicative types. By Lemma 6.4.4, the hypotheses of the
current theorem imply | (M) € Ag, where | (M) isthe normal form of M (provided one exists). By subject
reduction (Lemma 6.4.3) | (M) hasany typethat M has. Inspecting the definition of Ay, we seethat theonly
possibleformfor | (M) isc"eMje--- e« My, (k < n). But our remarks apply recursively to the M;, and any
term so constructed is by definition an answer term, which iswhat was to be proved. i
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6.5 The prospect for an untyped version of LPJ

The success of the central techniqueof LPJ inunderpinningthe LPJ~ type system for A[Bd!eag] and A[38!laz]
suggeststhat we investigate whether the unrestricted LPJ type system might play asimilar rolewith respect to
some untyped lambda-cal culus with assignments. Aswe have aready remarked, LPJ is unsafe for A[38!eag]
and A[3d!laz] themselves. For example, theterm

purew.v:=1; (puretv)?e-x1 X (6.3)

istypablein LPJ but gets stuck in A[Bo!eag] owing to the attempt to return a store-variable from the inner
pure.

Asafirgt attempt, we might consider lifting the restriction on the forms of term that can be returned from
pure constructs. This, however, leads to immediate disaster, because store-contexts can bind variables that
might be present in the returned form. We dready know that imposing a condition that no variables be freed
by purification leads to the problem that brings down the ILC and Chen/Odersky type systems, so we must
classify this approach as unpromising.

The next attempt (one to which this author has devoted considerable energy) is to introduce into the un-
typed cal culus a new kind of name for tagging threads, in the hopethat some sort of run-time check for thread
identity might cause bad purification attempts to get stuck. Unfortunately, it is not enough that all such at-
tempts get stuck: our desire for confluence demands that all stuck terms resulting from reduction starting at
the same term should be identical. This demand is difficult to satisfy: a characteristic failureis that pure-
contexts become duplicated around a portion of the result on one reduction path but not on another. Some
sort of idempotencerule for pure-contexts seems in order, but at this point the cal culus becomes vastly over-
balanced toward technicalities—the hope that an untyped calculus might expose computational intuitionsis
lost.

These negative experiences lead to the tentative conclusion that in order to obtain the generality of purifi-
cation afforded by the Launchbury/Peyton Jones type system it may be best just to work in atyped framework
from the start.

6.6 Chapter summary

In this chapter, we have investigated the construction of a safe type system for A[3d!eag] and A[3d!laz]. We
have noted a known flaw in the previous efforts along these lines (Chen/Odersky and ILC), and have con-
structed and proved safe ahybrid (LPJ™) of the flawed approaches with the type system proposed by Launch-
bury and Peyton Jones.
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In conclusion

We now conclude thisstudy of lambda-cal culi with assignment. Section 7.1 acknowledgesthe waysin which
theactual work fallsshort of coveringitsentirescope; Section 7.2 1ooksbeyond the boundarieswe have set for
this dissertation to see what further work might take advantage of the foundationswe have established here.
Section 7.3 provides afina summary of the work we have presented.

7.1 Unfinished business

This dissertation has one major hole: our failed attempt to incorporate the lazy-store calculus A[3d!laz] into
the scheme of the conservative-extension results presented in Section 5.2. Aswe noted in Section 5.2.6, the
prospects for such a proof using techniques anal ogous to those employed for A[3d!eag] are rather dim, since
the syntactic structurerequired for a conti nuati on-passi ng-style encoding of the command execution order for
A[Bd!laz] isdirectly at oddswith the nesting structurerequired for thelocal-name construct vw.M. It might be
possible to use Odersky’ s de Bruijn-like encoding scheme from [Odersky, 1993b] directly, but this approach
lacks the satisfying aspect of dealing with commands and name-locality in a modular fashion. Progressin
filling this gap seems to require new insight which the author of this dissertation has not yet achieved.

7.2 FutureWork

The calculi introduced inthisdissertation only model store-variableswith a singleassignabl e data component,
and only describe conventional sequential control constructsthat can be model ed by basic blocksor procedure
invocations. We now indicate briefly two directionsin which our core trestment may be extended with some
further effort. In Section 7.2.1, we consider compound mutabl e entities (such as data structures or arrays) that
are dlocated al at once, but have independently assignable parts. In Section 7.2.2 we consider the extension
of the techniques used in this dissertation to model non-local control constructs such as Scheme's call /cc.

7.21 Mutablearraysand data structures

Our entiretreatment of mutabl e datain thisdissertation hasbeen interms of store-variableswhich can be asso-
ciated withasingledatavaue. Aspreviously remarked on page 18, thistreatment does not exactly correspond
to the notion of data structure present in conventional programming languages such as C. In this section we
sketch some possible further work toward bridging this semantic gap.

Object identity versus component identity

The notion of store-variabletreated in thisdissertation resembl es the notion of variablein conventional imper-
ative programming languages, but the two concepts are far fromidentical. Data structuresin C are identified
with the storage they occupy. This means, for example, that in a structure with two integer fields the address
of thewhole structure and of thefirst field are the same, and that programs can detect thissharing by assigning
to thewhol e structure and the components separately. With store-variables, on the other hand, every alocated
entity hasadistinct identity. If wewant to have astructure containing two mutableinteger fields, yet alsoitself
mutable, we are forced to alocate a single store-variable containing an immutabl e pair of two store-variables
containing integers. To satisfy the semantics of the functional language, the implementation would have to
be something like a pointer to a structure of two (pointersto) integers. A conventional language implementa-
tion, however, would identify the storage all ocated to the structure with the storage al ocated to the contained
references. Although the difference is not semantically detectablein our functiona calculi with assignment,
the additional storage allocation would surely bevisibleto performance toolsin any practica software devel-
opment environment.

What islacking in our calculi isthe ability to subdivide the mutability of a store-variable. A reasonable
solution would be to introduce some structure on store-variable names so that a cluster of names can itself be
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given a unique name. The semantics could be defined by trandlation into the cal culus with individua store-
variables, taking into account type information to guide the identification of storage for contained references
with storage for the container reference.

Arrays and pointer arithmetic

At first glance there seems to be no problem in adding the conventional notion of dataarraysto our languages.
If we add our assignable variablesto a functiona programming language already having immutable arrays,
we can simulate a conventional mutable array by an immutable array of store-variables. However, in light
of the issue raised immediately above, we can see that more is required if the array itself isto be a mutable
object. Extending the solution suggested for structures above, we could introduce a nhotion of store-variable
names qualified with indices rather than component names.

7.2.2 Advanced control constructs

It is possible to augment the calculus A[30!eag] with a non-loca control operator in the style of [Felleisen
et al., 1987; Felleisen and Hieb, 1992; Felleisen, 1988]. Thisoperator isdefined in away that workswith any
syntactic monad; however, we will only consider it in the context of our calculi of assignments.

The cited works by Felleisen and his colleagues investigate the introduction of syntactically-defined con-
trol operatorsinto call-by-vauelambda-calculi for the purpose of providing an operationa semantics for the
language Scheme [Clinger and Rees, 1991] including the construct call/cc. Our aim here differs from theirs
in several respects. First, our base lambda-calculus is call-by-name rather than call-by-value. Second, we
do not incorporate our control construct into the applicative language; rather, we have it operate on a syntac-
ticaly distinct monadic fragment of our calculus. We could thus conjecture that an extension of functional
programming with control constructs based on our monad-inspired approach might actually be aconservative
extension of the base language, whereas thisis not expected of a model of Scheme. Although we are not in
a position to deny that a calculus modeling Scheme with call/cc can be a conservative extension of the call-
by-value lambda-calculus, thisis a reasonable conjecture because of the ability of aterm containing call/cc
to grab its evaluation context. Perhaps such a term can discover differences in evaluation patterns between
terms that are operationaly equivalent in the base calculus. 1 At any rate, we are motivated to study control
operators by the methods of this dissertation.

A control operator for the command calculi

Theideabehind the control operator C issimple. If aprocedureisin —. -norma form, every tail of the proce-
dure (portion following ar) represents the future of the computation (the continuation) from that point. The
control operator should be able to substitutea different continuation while storing the old one.

Formally, theaction of the control operator is defined by Figure 7.1, which givesthe ruleimplementing the
replacement-with-remembrance of the current continuation. The control operator takes aprocedure, called the
escape continuation as an argument, and produces an escape procedure. At the point where the escape proce-
dureisinvoked, thethen-current continuation is captured and passed as argument to the escape continuation,
which is where execution now continues.

The usua control operators call /cc and abort can be defined interms of C as follows:

call /cc
abort

Am.C (Ak.me (AX.C (AK'.ke X)) >X ke X)
M.C (Ak.TX)

Litisalso strongly suggestivethat [Felleisen, 1991] finds that an idealized Scheme with call/cc is more expressive than pure Scheme
in awell-defined sense that is related to operational semantics.
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pureS¥(C M)>xN] — pureS#ZMe (Ax.N)]

Figure 7.1: Rulefor control operator

Interaction of control and assignment

It isinteresting to note that the introduction of the operator C isincompatible with A[36!laz]. Consider the
term
pureC Ay.12)>x1 1.

We can reduce thisby a pure-lazy-reduction to 1, or viaa control reduction to

pure(Ay.12) e (Ax.11),

which reducesto 2 by {3 followed by pure-lazy. Thelazy-store cal culus with the added control operator isthus
not Church-Rosser. This counterexample does not apply in A[38!eag] because the purification contexts there
do not alow control operators to remain aong the spine of the command sequence. This failure of a coun-
terexample is not the same thing as having a proof of Church-Rosser for A|3d!eag] plus the control operator,
so it would be interesting further work to work out the theory of this calculus, compare it with the work of
Felleisen and colleagues cited above, and find the deep reason why the simple approach failsin thelazy-store
calculus.
This concludes our discussion of possiblefuture work based on the work in this dissertation.

7.3 Summary of technical results

We have introduced and studied formal representati ons of two potential paradigms of functional programming
with assignment statements. We have brought the apparatus of the study of the untyped lambda-cal culus to
bear on these representations, and have found that they have the Church-Rosser and standardization proper-
tiesjust as do thefoundationsof purefunctiona programming. Wehave expl ored the operational -equival ence
theory implied by this reduction-semantics basis and have found it to correspond to our informa understand-
ing in some simple test cases. The proposed calculi correspond in a precise way with store-computations as
modeled by alternative calculi which represent the store explicitly, and both calculi are conservative exten-
sions of appropriately chosen pure functiona calculi. Finaly, we have shown that a reasonably simple type
system guarantees safe usage of the assignment constructsin our untyped calculi.

We hope that the theoretical results presented here will lead to the confident adoption of a safe and rea
sonable design for a programming language combining the powerful higher-order program-construction fa-
cilities of functiona programming with the convenient resource-consumption model of programming with
assignments.
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Proofsof the fundamental propertiesfor A[Bdoeag] and A[Bdolaz]

Wegiveinthisappendix the proofsof the Church-Rosser and standardi zation theoremsfor thecal culi A[Bdceag]
and A[Boclaz] introduced in Chapter 5. We use the structure of the corresponding proofsin Chapter 3 as a
guidein structuring the proofsin thisappendix. Our presentation hereisthusrather sketchy: wegive only the
features that differ from those in the corresponding proofs and assume that these differing festures are to be
embedded in amatrix of general argument that islifted directly from Chapter 3.

In general, the proofs for A[Bdceag] and A[dclaz] require less work than the corresponding proofs for
A[Bo!eag] and A[Bd!laz]. The shift of the axiomatization of the store from rewriting of command-sequences
to the use of an explicit store removes many critical overlaps between rules. It is still necessary, however, to
carry out the proofsin terms of =-equivalence classes, since the issue that led to their introduction derives
entirely from the structure of the rules assoc and extend, which are retained in the explicit-store cal culi.

A.1 Thereductions—, and —,

Thereduction —. istheexact same for A[Bdceag] and A[Bdclaz] asfor A[3d!eag] and A[Bd!laz], and the def-
inition of — from — and —.. isderivedin the same way asit isin Section 3.3.2.
The first result we establish isthe anaogue of Proposition 3.4.1:

Proposition A.1.1 (Commutation of association) SupposewehaveM — N via reduction of a marked redex
A, and suppose also that M —, M’. Then there exist terms M” and N' such that M'—. *M”, N—, *N', and
M" — N by reducing A", where A" istheresidual of AinM”.

Proof: The statement of the propositionisillustrated by the following diagram:
M
N _ M’

— " . M”'

B

AR

‘«
N

The only critical overlap of reduction rulesthat survivesfrom the proof of Proposition 3.4.1 istheoverlap
between rulesunit and assoc; theold proof for thiscase still workshere. All the other overlap cases considered
in proving Proposition 3.4.1 involvereduction rulesthat are no longer present in the same form in A[Bdceag]
and A[Bdclaz].

Of the reduction rules that are introduced in the explicit-store calculi, most cannot overlap with assoc or
extend because they are written in terms of the term-in-store syntax o - (M), which is not involved in either
of the —. -rules. The only newly-introduced rule requiring consideration isthe purification rulein A[Bdclaz],
which can have —. -redexes in the store-context S%7[]. For thiscase, the old proof is easily translated into the
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context of A[Bdolaz]:

Z(wM) 5x-SE2[T (Ay.N) ]

Ny.o- (SF(w.M) > x-S N]]) §f‘zva>x SEH (Ay-N)]]

extend - _ o b'pure
" R
N0 (S{v Mo x St NIJ)
With the consideration of these two rule-overlaps, we have now established Proposition A.1.1.

The reasoning by which Corollaries3.4.2 and 3.4.3 are established isindependent of the calculusto which
they apply, so we can use this reasoning to obtain these same results for the explicit-store calculi. We have
now completed proving the necessary properties of the interaction between —. and — for A[Bdceag] and
A[Bdclaz].

A.2 Finitedevelopments

We next prove that — for the calculi with explicit stores has the strong finite-developments property. The

first step isto show that marked — -reduction isweakly Church-Rosser on =-equival ence classes (anal ogous
to Lemma 3.5.5):

LemmaA.2.1 Theweak Church-Rosser property holdsfor thecal culi A[Bdceag] and A[3dclaz] under marked
—» -reduction on =-equival ence classes.

Proof: The cases having to do with 3 and & are proved just as for theimplicit-storecal culi, since this core of
the calculusisunchanged. Once again, none of the previously existing overlaps carries over, and only the new
rule opure has an overlap (with unit). The proof for this case isexactly anal ogousto that for the corresponding
caseinLemma3.5.5. 1

The next step in proving finiteness of devel opmentsisto construct atermination measure for marked — -
reduction. The explicit-store calculi require no new reasoning here, only (1) some adjustment in the defini-
tion of the weighting function W []) to reflect the new reduction rules and similarly (2) modification of Def-
inition 3.5.6 to reflect the new reduction rules. We thus obtain the finiteness-of -devel opments property, and
further, the stronger properties given in Theorem 3.5.12.

A.3 The Church-Rosser property
Strong finiteness of developments gives us the Church-Rosser property exactly asin Section 3.6.

A.4 Standardization

Asin Section 3.7, the standardization theorem for the explicit-store calculi requires alot of work concerned
with evaluation contexts and head and internal redexes. We define evaluation contexts for A[Bdceag] and
A[Bdolaz] asgiveninFiguresA.1 and A.2; we al so augment the subterm ordering with thesinglenew ordering
givenin Figure A.3. Wereinterpret Definitions 3.7.1 and 3.7.2 in terms of these new definitionsof evaluation
context and subterm ordering.
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E] == ...Figure33...
| o-(E[)

Figure A.1: Evauation contexts for A[Booeag]

E] == ...Figure33...
| o (S¥ED])

Figure A.2: Evaluation contextsfor A[Bdolaz]

M = o(M) = M<M;

Figure A.3: Additional subterm ordering for A[Booeag] and A[3dclaz]

Wenow tackl ethe anal ogues of the lemmas concerning the preservation and separation of head and internal
redexes. We first consider the analogue of Lemma 3.7.6:

LemmaA.4.1 (Headsdon't sprout) If M —; N and [N] - hasa head redex Ay, then [M] . has a head redex.

Proof: We adopt the notation used in the proof of Lemma 3.7.6, and we refer to that proof for the impor-
tant discussion of the effect of the interaction of —.. -reduction with the case analysis. We use the same basic
divisioninto three cases based on the relative positionsof L' and Ay,.

Case (1): L' and A aredigoint.
Theargument from the proof of Lemma 3.7.6 applieswithlittlechange asfar asit can be carried out
independently of the actual form of evaluation contexts. For thefinal part of the argument in which
we enumerate a list of possible configurations in which A’ can be digjoint from Ay, the first four
cases till apply, since they deal with forms of evaluation context that still occur in the explicit-

store caculi. The only case we need to add to the list is the form E[1]o - (S#[f E[2]An]), where
A C S¥[]. Inthiscase A, isan evaluation redex of M, hence there exists a head redex.

Case (2): A, C L.

In this case the reasoning from the proof of Lemma 3.7.6 applieswithout change, sinceit makes no
use of the actua form of eva uation contexts.

Case(3): L' C A,
The general reasoning in thiscase, aswell asthe reasoning for the subcases for reductionrules 3, d,
and unit apply without change from Lemma 3.7.6. We now treat the cases resulting from reduction
rulesthat are introduced in A[Bdoeag] and A[Bdclaz]. We use ¢’ to denote a store that reduces to
a store o by reducing a binding for a store-variablein ¢. Since o’ and ¢ have the same domain

there is never any question of a reduction becoming available or becoming forbidden because of
the reduction from o’ to c.

(@ ov: Apy=0-(WMy)
We construct the following table of cases:

M: eval. redex:
o- () N
o-(wCA]) M

(b) oo=:Ap=0-(vi=N;; My)
We construct the following table of cases:
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& eval. redex:
c- (L) N
o-(A:=N;; M) A
o-(vi=QN]; M;) M
o (vi=N;; da]) M
o (vi=Ni; Mg) M

(€) 02 Ay=0-(V?eX-Myg)
We construct the following table of cases:

& eval. redex:
o-(A) N
o-(AN?>x-Mp) A
o (V?oxCIA]) M

o} '<\/.>[>X~M1> M
(d) Obiock: An = pureM;
We construct the following table of cases:

~

M: eval. redex:
pured’ iy
pureCi[A'] M

(€) Opeag: On=0-(TAX.My), etc.
This case appliesin the cal culus A[Bdoeag].
We construct the following table of cases:

~

M: eval. redex:
o (tAMi) M
o- () N
o- (T4 N

o (tA.CA]) M
The other two forms of purifiable expression require similar arguments.
(f) Oplaz: &= 0-(S#[1V]), etc.
This case appliesin the cal culus A[Bdolaz].

M: eval. redex:
o (S¥V)) M

The following cases are easy to describe: - (A') Iy
o (STN)) N

o (SEHN) N
One of the remaining possibilitiesoccur when A’ produces part of the command sequence no-
tated as S%7[]. No matter how thishappens, however, M takes theform a- (S¥[1 V]), and so M
isan evaluation redex.
The last possibility isthat M = o- (S&[A']) , inwhich case &' is an eval uation redex.

We have now completed the case analysis required to establish Lemma A.4.1.
The next of the lemmas supporting the standardization theorem is the anal ogue of Lemma 3.7.7:

LemmaA 4.2 (Headsarepreserved) LetA, beahead redexandA; beaninternal redexin M]- . If [M] it

[N] - , then the residual of A, in J. [N] consists of a single redex that is head redexin [N] . .

14

Proof: We consider the relative positiosn of A, and A asin the proof of Lemma 3.7.7.
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Case (1) A and A, aredigoint.
In this case, we reason as in the proof of Lemma 3.7.7, basing our enumeration of subcases on the
corresponding case in the proof of Lemma A.4.1 instead of Lemma 3.7.6.

Case (2) A C A

The reasoning used in the corresponding case in Lemma 3.7.6 applies as well in the present case—
not because the argument is generic, but because the propertiesit requires of A[36!eag] and A[3d!1az]
are also true of A[Bdoeag] and A[Boclaz].

The remaining lemma supporting the proof of standardization makes a generic argument, and so it holds
for the explicit-store calculi. We can thus prove the standardization result by the same methods as used in
Chapter 3.

A5 Conclusion

The remaining work in Chapter 3, i.e. lifting results about the factored reduction relations up to the original
calculus, can now be established by the same argumentsfor the explicit-store calculi.



126



B

Changesin notation and ter minology from previously published
versions

The notation employed in this dissertation differs in several respects from that presented in the antecedent
works [Odersky et al., 1993] and [Odersky and Rabin, 1993]. There are two main reasons for the authors
decision to change notation. First, the old notation was decidedly odd in some respects, such asin giving the
assigned store-variable rightmost in an assignment command. Second, the elaboration of the mathematical
exposition in the dissertation has placed a premium on compactness of notation; thus, several keyword-style
notations were replaced with non-al phabetic symbols. The author hopes that the exposition surrounding the
introduction of these notations compensates for the loss of familiarity.

With respect to terminology, the most troublesome point has been to decide what to call the identifiers
for assignable variables. Thisis a problem because the use of variable in the imperative-language cultureto
denote these expressions is well-entrenched, yet it conflicts with the use of variable in the lambda-cal culus
culture to denote an identifier for which expressions are substituted in the course of computation. We have
decided to retain thelambda-cal culus usage of the ssimpleterm variabl e, and to consistently refer to theformer
kind as store-variables. In the antecedent workswe employed such terms astag and | ocation, but we now find
tag to be too unfamiliar and locationto be overly evocative of implementation issuesfor thelevel of discourse
of the research presented.

There are also some differences in detail between the calculi Aysr and A[Bd'eag]. In Avar, thereisonly one
substitutiverule, B, and all other rulesthat transmit expressionsare writtenin terms of 3. In the present work,
theserulesarewritteninterms of substitutiondirectly in order to draw acleaner boundary between functional
and imperative rules. In retrospect, the revision does not seem to have gained much.
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